

Устройство сбора данных ЭНКМ-3

Руководство по эксплуатации

Оглавление

Введение	• • • • • • • • • • • • • • • • • • • •		4
Обозначен	ния и с	окращения	6
1	Описа	ние устройства	8
	1.1	Назначение	8
	1.2	Конструкция и габаритные размеры	
2	Техни	ческие характеристики	
	2.1	Условия эксплуатации	16
	2.2	Питание	
	2.3	Интерфейсы	
	2.4	Встроенный модем	
	2.5	ГЛОНАСС/GPS модуль	20
	2.6	Обмен данными	21
	2.7	Показатели надежности и ЭМС	22
3	Функц	циональные возможности	25
	3.1	Опрос устройств	25
	3.2	Синхронизация часов	
	3.3	Прием и передача команд телеуправления	30
	3.4	Телесигнализация	
	3.5	Логические выражения	31
	3.6	МЭК 60870-5-101-2006 и МЭК 60870-5-104-2004	
	3.7	МЭК 61850 8-1	34
	3.8	Modbus RTU/TCP	35
	3.9	Атрибуты качества параметров	
	3.10	Хранение ретроспективы измерений и состояний	36
	3.11	Конфигурирование УСД	36
	3.12	Резервирование опрашиваемых устройств	
	3.13	Режим «сквозного канала»	
	3.14	Ввод/вывод дискретных сигналов	39
	3.15	Ввод аналоговых сигналов	42
	3.16	Управление приводом	43
4	Компл	лектность	47
5	Испол	ьзование по назначению	48
	5.1	Эксплуатационные ограничения	48
	5.2	Общие указания по монтажу	48
	5.3	Подключение к интерфейсам	49
6	Настр	ойка УСД	50
	6.1	Обновление встроенного ПО	50
	6.2	Конфигурирование ЭНКМ-3	
	6.3	Описание ПО «ES Find IP»	
	6.4	Сброс настроек к значениям по умолчанию	54

7	Техн	ническое обслуживание	56
	7.1	Общие указания	56
	7.2	Меры безопасности	
	7.3	Порядок технического обслуживания	56
	7.4	Сервисный центр	58
8	Тран	нспортировка и хранение	59
9	Упаі	ковка	60
10	Гара	интии изготовителя	61
Прило	жение А.	. Формуляр соглашений о совместимости телемеханической системы на	і базе
ЭНКМ-	-3 в сооті	ветствии с ГОСТ Р МЭК 60870-5-101-2006 / ГОСТ Р МЭК 60870-5-104-	2004 62
Прило	жение Б.	Протокол Modbus	76
Прило	жение В.	. Протокол SNMP	79
Прило	жение Г.	Протокол МЭК 61850	81

Введение

Настоящее руководство по эксплуатации (далее – РЭ) устройства сбора данных ЭНКМ-3 (далее – ЭНКМ-3) предназначено для ознакомления потребителя с техническими характеристиками, функциями и обеспечения сведениями, необходимыми для правильной эксплуатации устройства. РЭ содержит технические данные, описание работы, указания по установке и использованию, техническому обслуживанию, упаковке, транспортированию и хранению, а также схемы подключения УСД к цепям питания, дискретным и аналоговым входам/выходам, цифровым интерфейсам.

Внимание! Данное руководство относится только к ЭНКМ-3 аппаратной версии 5 и выше. Руководство для ЭНКМ-3 предыдущих версий (снято с производства): http://enip2.ru/documentation/re-enkm.403570.003.pdf.

Прочитайте руководство полностью прежде, чем использовать устройство.

Целевая группа

Настоящее РЭ предназначено для персонала, осуществляющего проектирование, монтаж и наладку устройств.

Сфера действия документа

РЭ распространяет действие на устройства УСД:

- ЭНКМ-3 (hw 6) выпускаемых с 2019 года с версией прошивки 1.18.19 и новее.
- ЭНКМ-3 (hw 5) выпускаемых с 2017 до 2020 года с версией прошивки 1.17.18.

Поддержка

Если у Вас возникли вопросы, относящиеся к устройству, обращайтесь, пожалуйста, в службу технической поддержки ООО «Инженерный центр «Энергосервис»:

Официальный сайт: www.enip2.ru

Телефон: +7 (8182) 65-75-65

Электронная почта: enip2@ens.ru

Примечание: Используйте устройство только по назначению, как указано в настоящем Руководстве. Установка и обслуживание устройства осуществляется только квалифицированным и обученным персоналом.

Не используйте для очистки или обеззараживания средства за исключением тех, что рекомендуется производителем.

Устройство должен быть сохранено от ударов.

Подключайте устройство только к источнику питания с напряжением, соответствующим указанному на маркировке.

Внимание! Программное обеспечение постоянно совершенствуется и дополняется новыми функциональными настройками устройства. Производитель оставляет за собой право вносить изменения и улучшения в ПО без уведомления потребителей.

Обозначения и сокращения

В настоящем руководстве по эксплуатации применяются следующие обозначения и сокращения:

- АПД аппаратура передачи данных;
- ГЛОНАСС глобальная навигационная спутниковая система.
- ДП диспетчерский пульт;
- КАНАЛ УСД интерфейс ввода/вывода УСД, по которому осуществляется обмен данными с устройствами вышестоящего уровня (ЦППС, ПК и пр.);
- КП контролируемый пункт;
- ПОРТ УСД интерфейс ввода/вывода УСД, по которому осуществляется сбор данных с устройств нижестоящего уровня (см. далее Устройства);
- ПЭВМ персональная электронно-вычислительная машина;
- РЗА релейная защита и автоматика;
- ТИ телеизмерение;
- ТИТ телеизмерение текущее;
- ТИИ телеизмерение интегральное;
- ТС телесигнализация;
- TC опроса виртуальный дискретный сигнал, характеризующий состояние связи с опрашиваемым устройством (ВКЛ устройство опрашивается, ОТКЛ нет связи с устройством);
- ТУ телеуправление;
- УСД устройство сбора данных;
- УСО устройство связи с объектом;
- Устройства устройства нижестоящего уровня (ЦИП, счетчики электроэнергии, терминалы РЗА, контроллеры присоединения, модули ввода/вывода дискретных и аналоговых сигналов, УСО и пр.);
- ЦИП цифровой измерительный преобразователь;
- ЦППС центральная приемо-передающая станция;

- GOOSE (англ. Generic Object Oriented Substation Event) протокол передачи в рамках стандарта МЭК 61850 8-1;
- GPS (англ. Global Positioning System) система глобального позиционирования, спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение во всемирной системе координат WGS 84;
- RS-TCP режим «сквозного канала»;
- TCP-порт номер порта от 1 до 65535, который используется в протоколе TCP для определения процесса-получателя пакета в пределах одного хоста;
- UTC (англ. Universal Coordinated Time) всемирное координированное время.

1 Описание устройства

1.1 Назначение

УСД ЭНКМ-3 предназначено для работы в составе систем сбора и передачи телемеханической информации с энергетических объектов различного уровня.

УСД выполняет следующие функции:

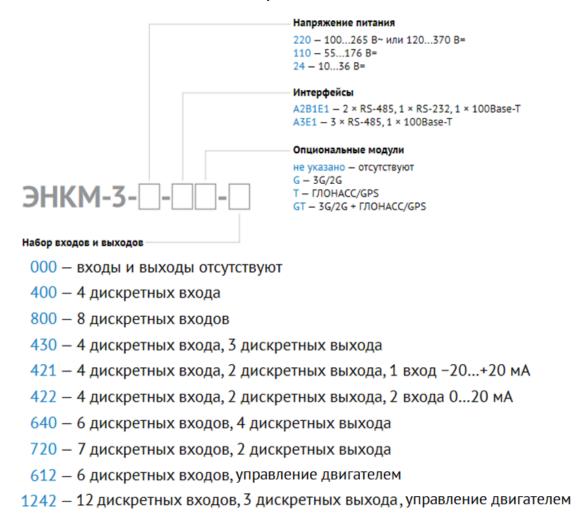
- сбор данных (дискретных и аналоговых сигналов) с устройств нижестоящего уровня: ЦИП, счетчиков электроэнергии, терминалов РЗА, контроллеров присоединения, модулей ввода/вывода дискретных и аналоговых сигналов, УСО, устройств сбора данных и т. д.:
- передача данных на вышестоящий уровень в соответствии с ГОСТ Р МЭК 60870-5-101, ГОСТ Р МЭК 60870-5-104 и МЭК 61850 (опционально);
- прием команд телеуправления с вышестоящего уровня и их передача устройствам нижестоящего уровня;
- прием сигналов точного времени от систем ГЛОНАСС, GPS (GPS только в качестве резервной системы) или источников точного времени по протоколам SNTP v4, ГОСТ Р МЭК 60870-5-101 или ГОСТ Р МЭК 60870-5-104, синхронизация внутренних часов и передача сигналов синхронизации опрашиваемым устройствам.

Создаваемая на базе УСД система сбора и передачи информации представляет собой территориально распределенную систему. На полевом уровне системы размещаются устройства, выполняющие функции телеизмерений (ЦИП, счетчики электроэнергии и т.п.), функции телесигнализации и телеуправления (модули ввода/вывода дискретных сигналов, УСО и т.п.). Все устройства объединяются в информационные магистрали, по которым УСД осуществляет непрерывный обмен с устройствами. УСД вместе с устройствами образуют контролируемый пункт (КП) телемеханики.

УСД не является средством измерения. Выполняя функции по сбору и передаче телеизмерений, УСД не оказывает влияние на метрологические характеристики измерительных каналов.

УСД предназначено для применения на объектах без постоянного дежурного персонала.

УСД предназначено для применения преимущественно на современных цифровых каналах передачи информации. Допускается также использование каналов связи с ограниченной шириной полосы пропускания в условиях высокого уровня помех. При этом должно выполняться требование оптимального соотношения между скоростью и


надежностью передачи информации для обеспечения требуемого объема данных и заданного времени передачи.

В качестве каналов телемеханики также могут быть использованы проводные (кабельные и воздушные, уплотненные и неуплотненные) каналы, высокочастотные каналы по воздушным линиям и распределительной сети, радио и радиорелейные каналы связи, GSM/3G-сеть, спутниковая связь.

Обмен данными между КП, построенным на базе УСД ЭНКМ-3, и вышестоящим уровнем осуществляется в соответствии с ГОСТ Р МЭК 60870-5-101, ГОСТ Р МЭК 60870-5-104, Modbus или МЭК 61850. Передача информации может производиться одновременно по нескольким независимым каналам связи. УСД сопрягается с каналообразующей аппаратурой с использованием интерфейсов RS-232, RS-485 (ГОСТ Р МЭК 60870-5-101, Modbus RTU) и Ethernet (ГОСТ Р МЭК 60870-5-104, МЭК 61850, Modbus TCP).

Термины, применяемые в настоящем РЭ, соответствуют ГОСТ 26.005.82.

Условные обозначения возможных вариантов исполнения ЭНКМ-3:

1.2 Конструкция и габаритные размеры

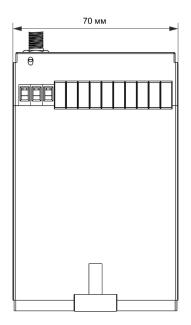
ЭНКМ-3 поставляется для применения на панелях или в шкафах телемеханики.

ЭНКМ-3 устанавливается на DIN-рельс. При этом необходимо обеспечить питание устройства в соответствии с маркировкой, а также защиту от перенапряжений всех интерфейсов.

Внешний вид модификаций устройств представлен на рис. 1.1-1.3, габаритные размеры – рис. 1.5-1.6.

Рисунок 1.1. Внешний вид ЭНКМ-3-220-A2B1E1-000

Рисунок 1.2. Внешний вид ЭНКМ-3-220-A2B1E1GT-430



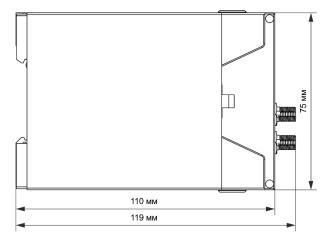

Рисунок 1.3. Внешний вид ЭНКМ-3-220-A2B1E1GT-800

Рисунок 1.4. Внешний вид ЭНКМ-3-24-A2B1E1GT-720

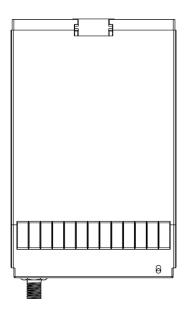


Рисунок 1.5. Габаритные размеры ЭНКМ-3-X-X-000

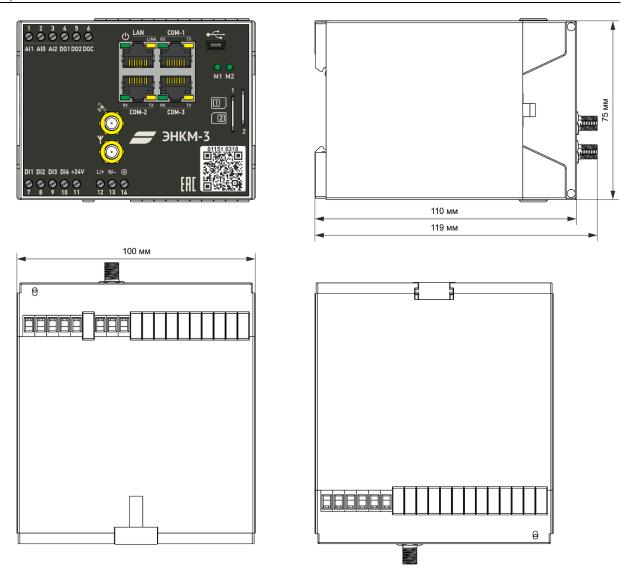


Рисунок 1.6. Габаритные размеры ЭНКМ-3-X-X-XXX

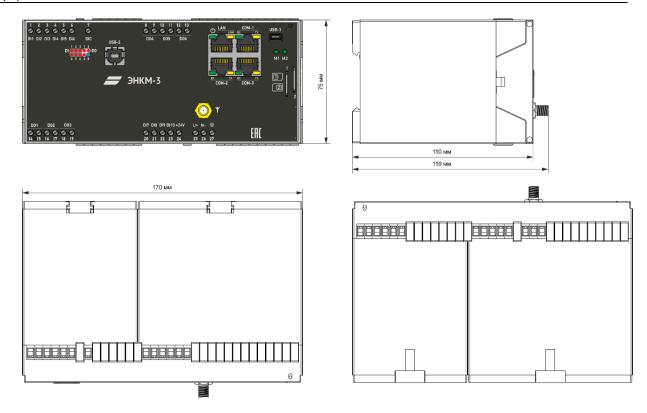


Рисунок 1.7. Габаритные размеры ЭНКМ-3-X-X-1242

Габаритные размеры и масса устройства приведены в табл. 1.1.

Таблица 1.1

Taominga 1.1				
Конструктивное исполнение	Габаритные размеры (ВхШхГ), мм	Масса нетто, кг, не более	Масса брутто, кг, не более	Примечание
ЭНКМ-3-Х-Х-000	75x70x110			ID40
ЭНКМ-3-X-XG(T)-000	75x70x119	0,5	1,0	IP40,
ЭНКМ-3-X-XG(T)-XXX	75x100x119			монтаж на DIN-рельс 35 мм
9HKM-3-X-XG(T)-1242 75x170x119		1,0	1,5	о мм

Внешний вид: на лицевой панели нанесена маркировка клемм питания, интерфейсов и светодиодных индикаторов, на верхней панели указана модификация устройства и основные характеристики.

Питание устройства подается на винтовые клеммы в нижнем левом углу. При наличии питания загорается светодиод, обозначенный **也**.

Подключение защитного заземления осуществляется к зажиму модуля питания, расположенному рядом с клеммами питания и обозначенному знаком:

Устройство имеет гнезда стандарта RJ45 – интерфейсы (RS-232/RS-485, Ethernet) для подключения к устройствам нижестоящего уровня (ЦИП, счетчикам электроэнергии, модулям ввода/вывода и другим устройствам). Также указанные интерфейсы используются для передачи информации на вышестоящий уровень.

Доступные интерфейсы (максимальная скорость ограничивается скоростью опрашиваемого устройства):

- RS-485 (ГОСТ Р МЭК 60870-5-101, Modbus RTU): скорость передачи данных 2400...115200 бод 2 или 3 шт.
- RS-232 (ГОСТ Р МЭК 60870-5-101, Modbus RTU): 2400...115200 бод 1 шт.
- Ethernet (ГОСТ Р МЭК 60870-5-104, Modbus TCP, МЭК 61850, SNMP v1, RS-TCP): 100 Мбит/с − 1 интерфейс, до 14 каналов.

ЭНКМ-3 имеет на лицевой стороне прибора разъемы для SIM карты (карта вставляется срезом вперед в соответствии с пиктограммой), разъем порта USB (тип разъема Mini-B) для конфигурирования и диагностики, а также разъемы для антенн GSM/3G и ГЛОНАСС/GPS.

Таблица 1.2. Описание работы светодиодов

Светодиод	Описание
Питание	наличие питания прибора
LAN	обмен данными по интерфейсу LAN
COM, RS-232, RS-485	оранжевый – передача данных по соответствующему интерфейсу; зеленый – приём данных по соответствующему интерфейсу
M1	зеленый – питание модема; красный: 500 мс вкл/500 мс откл – нет связи с сетью; 50 мс вкл/3990 мс откл – устройство зарегистрировано в сети; 50 мс вкл/990 мс откл – голосовой вызов; 50 мс вкл/1990 мс откл – обмен данными;
M2	зеленый: часы синхронизированы со спутниковой системой; красный: горит – ЭНКМ зарегистрировался в сотовой сети, получил IP-адрес; 500 мс вкл/500 мс откл – устройство в режиме загрузчика прошивки. зеленый/красный попеременно: стирание прошивки оранжевый: 100 мс вкл/100 мс откл – запись прошивки

2 Технические характеристики

2.1 Условия эксплуатации

Рабочие условия эксплуатации	
Рабочий температурный диапазон	от -40 до +70°C
Относительная влажность воздуха	до 98 при 25°C
Атмосферное давление	65-107 кПа (487-803 мм рт. ст.)

- 2.1.1 УСД сохраняет работоспособность после транспортировки в транспортной таре в диапазоне температур от минус 50 до плюс 70 °C (Ct2 по ГОСТ Р МЭК 60870-2-2-2001).
- 2.1.2 По устойчивости к механическим воздействиям УСД соответствует нормальным условиям размещения и хранения с облегченными условиями транспортирования классу Вт по ГОСТ Р МЭК 60870-2-2-2001.
- 2.1.3 Устройство устойчиво в процессе эксплуатации и хранения к воздействию атмосферного давления в соответствии с требованиями ГОСТ Р МЭК 60870-2-2-2001.
- 2.1.4 По типу размещения УСД относится к классу В по ГОСТ Р МЭК 60870-2-2-2001.
- 2.1.5 Максимальная высота над уровнем моря для эксплуатации ЭНКМ-3 3500 метров.
- 2.1.6 УСД должны устанавливаться в шкафах телемеханики степенью защиты:
 - для размещения оборудования в закрытых помещениях (ОПУ, РЩ, ЗРУ и пр.) не хуже IP 21;
 - для размещения оборудования на открытом воздухе (ОРУ) не хуже IP 55.
- 2.1.7 Сопротивление изоляции между каждой независимой цепью (гальванически не связанной с другими цепями) и корпусом, соединенным со всеми остальными независимыми цепями УСД составляет не менее 100 МОм при напряжении постоянного тока 500 В.
- 2.1.8 Электрическая изоляция между портом электропитания и корпусом должна выдерживать без повреждений испытательное напряжение действующим значением 2,0 кВ частоты 50 Гц в течение 1 минуты (для модификации ЭНКМ-3-220-...).
- 2.1.9 Передача данных между устройством и системой вышестоящего уровня может осуществляться по каналам RS-232, RS-485 со скоростью 2400, 4800, 9600, 19200, 38400, 115200 бит/с, по каналам сети Ethernet со скоростью 10/100 Мбит/с. Скорость обмена ограничивается пропускной способностью конкретного канала передачи данных.

2.2 Питание

Электропитание	ЭНКМ-3-220	ЭНКМ-3-24	ЭНКМ-3-110
Диапазон входного напряжения	100265 В~ (4555 Гц) или 120370 В=	1036 B=	55176 B=
Номинальное значение	230 В =/~, 50 Гц	24 B=	110 B=
Потребляемая мощность		не более 10 ВА	

Примечание: для защиты от короткого замыкания в цепи питания установлен плавкий предохранитель F1 номиналом 3,15 A.

2.3 Интерфейсы

2.3.1 УСД имеет интерфейсы RS-232, RS-485 и Ethernet, которые могут использоваться для сбора данных с устройств нижестоящего уровня (ЦИП, счетчики электроэнергии, терминалы РЗА и т.п.) – режим порта, или для передачи информации на вышестоящий уровень – режим канала.

Обозначение	Интерфейс	Разъем	Описание	
COM-1	RS-232 или RS-485	RJ45	2400115200 бод; RS-232 может быть использован в качестве дискретного входа; питание 24 В в модификации ЭНКМ-3612	
COM-2	RS-485	RJ45	2400115200 бод	
COM-3	RS-485	RJ45	2400115200 бод; питание 24 В в модификациях ЭНКМ-3720, ЭНКМ-3612	
LAN	Ethernet	RJ45	10/100 Мбит/с	
•	USB	Mini-B	Используется для настройки, обновления прошивки и диагностики	

- 2.3.2 ЭНКМ-3 обеспечивает непрерывный опрос устройств, подключенных к портам, и передачу данных на вышестоящий уровень через каналы. Интерфейсы RS-232 и RS-485 могут быть настроены как порты или как каналы. Интерфейсы Ethernet и сети GSM/3G могут одновременно использоваться как порты и как каналы.
- 2.3.3 Максимальное количество устройств нижестоящего уровня, которое можно подключить по одному интерфейсу, указано в табл. 2.1. Суммарно по всем интерфейсам можно подключить не более 64 устройств, при этом объем передаваемых данных не должен превышать 8192 ТИ, 4096 TC, 2048 ТУ.

Таблица 2.1

Интерфейс	Максимальное количество устройств, подключаемых по 1 интерфейсу, не более, шт.
RS-232	1
RS-485	31 без использования репитеров, 64 с использованием репитеров (при этом 64 – максимальное количество по всем интерфейсам)
Ethernet: (МЭК 60870-5-101 через UDP; подписка на GOOSE)	64 (при этом 64 – максимальное количество по всем интерфейсам)

Интерфейс	Максимальное количество устройств, подключаемых по 1 интерфейсу, не более, шт.
Ethernet: (ΓΟCT P MЭK 60870-5-104,	48* (при этом 48 – максимальное количество по всем
Modbus TCP)	интерфейсам Ethernet)

^{*} при опросе 47 устройств нижестоящего уровня по протоколам ГОСТ Р МЭК 60870-5-104 или Modbus TCP, будет доступен всего 1 канал для передачи данных на вышестоящий уровень, т.к. суммарное количество устройств, опрашиваемых по данным протоколам, и каналов передачи на вышестоящий уровень не может превышать 48.

- 2.3.4 На один порт RS-485 допускается подключать разные типы устройств с одинаковыми или схожими (например, Modbus-подобными) протоколами. Не допускается подключать на один порт устройства, опрашиваемые по Modbus и МЭК-60870-101.
- 2.3.5 Для опроса всех устройств по порту с периодичностью не более 1 сек необходимо подключать не более 10 устройств на скорости опроса 9600 бод, не более 20 устройств на скорости опроса 19200 бод.

Время передачи данных от устройства в ЭНКМ-3 зависит от интерфейса опроса, скорости обмена, объема параметров, протокола, типа устройства и других факторов. Ориентировочное время цикла опроса одного устройства по протоколу Modbus приведено в табл. 2.2.

Таблица 2.2.

Кол-во параметров	Время цикла опроса по Modbus, мс		
	9600 бит/сек	19200 бит/сек	
10 регистров	60	35	
20 регистров	80	50	
30 регистров	105	65	
40 регистров	125	80	

- 2.3.6 ЭНКМ-3 поддерживает до 14 каналов передачи данных на вышестоящий уровень, которые могут быть организованы по интерфейсам:
 - RS-232 и RS-485 до 3 каналов (количество каналов равно количеству интерфейсов);
 - Ethernet и GSM/3G до 14 каналов (при этом 14 каналов максимальное количество по всем интерфейсам). Для получения данных по протоколу SNMP v1 отдельный канал не требуется;
- 2.3.7 ТСР-канал может работать в одном из следующих режимов:
 - Режим сервера

Если канал ЭНКМ-3 настроен как сервер, то ЭНКМ-3 по данному сокету ожидает подключения клиента. Настраивается IP-адрес разрешенного клиента и ТСР-порт. После подключения клиента (установки ТСР-сессии) начинается обмен по

выбранному для этого канала протоколу. В случае разрыва ТСР-сессии ЭНКМ-3 ожидает восстановление сессии.

Если в поле IP-адреса разрешенного клиента указано 255.255.255.255, то доступно подключение с любого IP-адреса.

• Режим клиента

Если канал ЭНКМ-3 настроен как клиент, то ЭНКМ-3 по данному сокету инициализирует установление соединения с указанным в настройках IP-адресом удаленного сервера. После открытия соединения (установки TCP-сессии) ЭНКМ-3 готов к обмену по выбранному для этого канала протоколу. В случае разрыва соединения ЭНКМ-3 обеспечивает восстановление сессии.

В режиме клиента необходимо указать IP-адрес сервера и порт, на который следует осуществить подключение. При необходимости использовать маршрутизацию в разные подсети, в ЭНКМ-3 можно установить до 16 правил маршрутизации ТСР-пакетов, включающих в себя IP адрес сети, маску сети и адрес шлюза.

2.4 Встроенный модем

2.4.1 Опционально, ЭНКМ-3 имеет встроенный модем (**G** в условном обозначении), для сбора/передачи данных по сетям сотовой связи. Характеристики модема в зависимости от аппаратной версии приведены в табл. 2.3.

Таблина 2 3

таолица 2.3			
Параметр	hw 6.0 и меньше	hw 6.1	hw 6.2
Поддержка сотовых сетей	2G/3G		2G/3G/4G
Стандарты связи	GSM/GPRS/EDGE/UMTS/HSPA+		GSM/GPRS/EDGE/ UMTS/HSPA+/LTE
Отправка SMS	+		-
Кол-во SIM-карт	1 2		2
Тип авторизации		Нет/РАР/СНАР	

- 2.4.2 Для контроля регистрации в мобильной сети в ЭНКМ-3 предусмотрены следующие механизмы:
 - ping ЭНКМ-3 с заданной периодичностью отправляет ICMP-запросы на указанный IP-адрес. При отсутствии ответов модем перезагружается и заново регистрируется в сети.
 - Передача данных при отсутствии обмена данными по мобильной сети в течение указанного времени (по умолчанию 20 минут) ЭНКМ-3 перезагружает встроенный модем.

- 2.4.3 Режим работы модема с двумя SIM-картами попеременный. Переключение между SIM-картами производится при неуспешной регистрации в сети или по таймауту.
- 2.4.4 Для диагностики модема (время работы, состояние подключения, уровень сигнала и т.п.) используется ПО «Конфигуратор ЭНКС», меню «Дополнительно -> Диагностика по SNMP»:

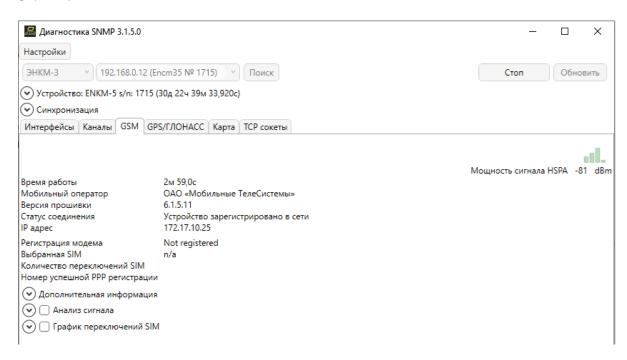


Рисунок 2.1. Интерфейс окна диагностики модема.

- 2.4.5 Для обеспечения канала связи между центром сбора и контролируемым объектом необходимо выполнение следующих условий:
 - сервер центра сбора данных должен иметь выход в сеть Интернет или доступ в частную виртуальную сеть закрытого APN (TCP-порт 2404);
 - ЭНКМ-3 расположен в зоне покрытия сетей мобильной связи, услуга пакетной передачи данных доступна;
 - SIM-карта, установленная в ЭНКМ-3, имеет фиксированный (статический) IPадрес. Допускается применение динамической адресации SIM-карты.

2.5 ГЛОНАСС/GPS модуль

2.5.1 Опционально, ЭНКМ-3 имеет встроенный ГЛОНАСС/GPS модуль (**T** в условном обозначении), для синхронизации встроенных часов.

Характеристики ГЛОНАСС/GPS модуля		
Поддерживаемые навигационные системы	ГЛОНАСС/GPS	
Частота приёма	15751602 MHz	
Антенна	3,3 V, выходное сопротивление 50 Ом, TNC-	
Amerina	разъём, всенаправленная	

2.5.2 Для диагностики модуля (кол-во спутников, координаты, уровень сигнала и т.п.) используется ПО «Конфигуратор ЭНКС», меню «Дополнительно -> Диагностика по SNMP»:

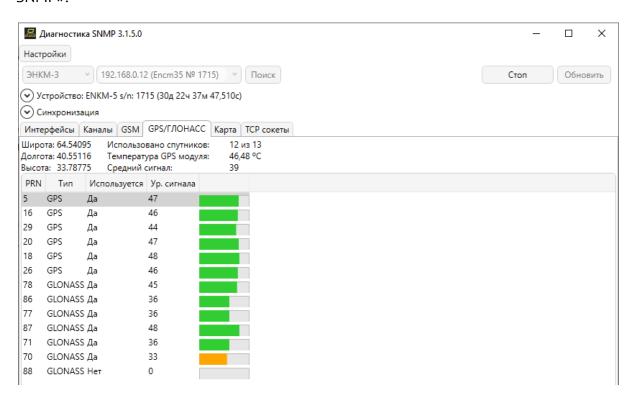


Рисунок 2.2. Интерфейс окна диагностики ГЛОНАСС/GPS модуля.

2.6 Обмен данными

2.6.1 Основные параметры приведены в таблице 2.4:

Таблица 2.4

Объем обрабатываемых данных				
Количество параметров	8192 сигналов телеизмерений (ТИ), 4096 сигналов событий (ТС), 2048 адресов телеуправления (ТУ), 256 адресов записи уставок			
Обмен данными с вышестоящим уровнем				
Каналы и протоколы обмена (до 14 каналов) ²⁾	UART (RS-232, RS-485):			
Время выдачи управляющего воздействия по команде телеуправления	Менее 1 с			
Время обработки сигнала от нижестоящего уровня и передача его на вышестоящий уровень	Менее 1 с			
Количество последних событий, хранящихся в энергозависимой памяти устройства	Дискретные – не менее 1000 шт.; Аналоговые – не менее 1000 шт.			

Количество последних событий, хранящихся в энергонезависимой памяти устройства	Дискретные – 289 шт.
Обмен данными с устройствами нижестоящего у	ровня
Порты и протоколы обмена (до 4 портов)	UART (RS-232, RS-485): ГОСТ Р МЭК 60870-5-101/103, Modbus RTU и др.; Ethernet: ГОСТ Р МЭК 60870-5-104, Modbus TCP; МЭК 60870-5-101 через UDP; МЭК 61850-8-1 (GOOSE); GSM/3G (только в модификации ЭНКМ-3G): ГОСТ Р МЭК 60870-5-104, Modbus TCP, опционально МЭК 61850;
Максимальное количество опрашиваемых устройств	64¹
Поддерживаемые устройства	ЭНИП-2, ЭНМВ-1, устройства с поддержкой ГОСТ Р МЭК 60870-5-101, ГОСТ Р МЭК 60870-5-103, ГОСТ Р МЭК 60870-5-104, Modbus RTU, Modbus TCP, СЭТ-4ТМ.03, Меркурий-230, А1800, СС-301, БЗП-01/02/03, Етах/Ттах, подписка на GOOSE-сообщения (подробнее в п. 3.1)
Синхронизация времени	
Прием сигналов точного времени и синхронизация внутренних часов УСД	От встроенного ГЛОНАСС/GPS приемника; От основного либо резервного SNTP-сервера каждые 20 секунд; От вышестоящего уровня или с помощью БКВ ЭНКС-2 (средствами протоколов обмена ГОСТ Р МЭК 60870-5-101 и ГОСТ Р МЭК 60870-5-104 (C_CS_NA_1 (103)), по команде с вышестоящего уровня.
Передача сигналов точного времени опрашиваемым устройствам	По протоколу ГОСТ Р МЭК 60870-5-101, ГОСТ Р МЭК 60870-5-103 или в рамках заводского протокола устройства (периодичность синхронизации и список поддерживаемых устройств см. в п. 3.2.

¹⁾ За исключением случая, когда интерфейсы Ethernet используются для опроса устройств нижестоящего уровня по протоколам МЭК-60870-5-104, Modbus TCP и МЭК 61850 MMS. В данном случае максимальное количество устройств, опрашиваемых по этим протоколам, не может превышать 48.

2.7 Показатели надежности и ЭМС

- 2.7.1 По достоверности передачи информации по каждой функции (ТС, ТИТ, ТУ) устройство относится к 1-й категории по ГОСТ 26.205-88:
 - вероятность трансформации информации телесигнализации не выше 10^{-8} ;
 - вероятность отказа от исполнения посланной команды (при пятикратном допуске повторения передачи) не более 10^{-10} ;
 - вероятность образования ложных сигналов телеуправления, телесигнализации, телеизмерения не более 10^{-12} .

2.7.2 Показатели надежности:

- по надежности УСД соответствует группе 1 по ГОСТ 26.205-88, предусматривающей работу без перерывов и установку устройства в труднодоступных местах;
- средняя наработка на отказ не менее 100 000 часов в нормальных условиях эксплуатации;
- среднее время восстановления работоспособности устройства не более 1 часа;
- время готовности УСД к работе при включении питания 15 сек;
- полный средний срок службы устройства не менее 25 лет;
- коэффициент технического использования не менее 0,97;
- режим работы УСД непрерывный.

2.7.3 Требования к ЗИП:

При проектировании рекомендуется закладывать ЗИП из расчета 1 УСД на 100 штук.

2.7.4 Электромагнитная совместимость:

УСД соответствует требованиям по электромагнитной совместимости, регламентированным стандартами ГОСТ Р 51317.6.5-2006 и СТО 56947007-29.240.044-2010 и указанным в табл. 2.5.

Таблица 2.5

		Величины воздействий на порты УСД						
Nº	№ Методы и виды испытаний		= 24 B	RS-232 RS-485 Ethernet	DI DO	Корпус	Заземл	
1	ГОСТ 30804.4.2 Устойчивость к электростатическим разрядам «Контактный разряд»: «Воздушный разряд»:	-	-	-	-	±6 κB ±8 κB	-	
2	ГОСТ Р 50317.4.3 Устойчивость к радиочастотному электромагнитному полю	-	-	-	-	10 В/м	-	
3	ГОСТ Р 50648 Устойчивость к магнитному полю промышленной частоты Длительно: Кратковременно 1 с:	-	-	-	-	100 A/M 1000 A/M	-	
4	ГОСТ Р 50649 Устойчивость к импульсному магнитному полю	-	-	-	-	300 А/м	-	
5	ГОСТ Р 50652 Устойчивость к затухающим колебательным магнитным полям	-	-	-	-	100 А/м	-	
6	ГОСТ 30804.4.4. Устойчивость к наносекундным импульсным помехам	±4 кВ	±4 кВ	±4 κΒ (EK)	±4 кВ (УСР)	-	-	
7	ГОСТ Р 51317.4.5 Устойчивость к микросекундным импульсным помехам большой энергии «Провод-провод»: «Провод-земля»:	±2 κB ±4 κB	±1 κB ±2 κB	±4 кВ (Э)	±2 κB ±4 κB	-	-	

			Вели	чины воздей	йствий на по	орты УСЛ	
Nº	Методы и виды испытаний	= 220 B ~ 220 B	= 24 B	RS-232 RS-485 Ethernet	DI DO	Корпус	Заземл
8	ГОСТ Р 51317.4.6 Устойчивость к кондуктивным помехам, наведенными радиочастотными электромагнитными полями	10 Brms	10 Brms	10 Brms (Э)	10 Brms	-	10 Brms
9	ГОСТ 30804.4.11 Устойчивость к динамическим изменениям напряжения сети электропитания	Соотв.	-	-	-	-	-
10	ГОСТ IEC 61000-4-12 Устойчивость к звенящей волне «Провод-провод»: «Провод-земля»:	±2 кВ ±4 кВ	±2 κB ±4 κB	±4 κB (Э)	±2 кВ ±4 кВ	-	-
11	ГОСТ IEC 61000-4-13 Воздействие гармоник и интергармоник, включая сигналы, передаваемые по электрическим сетям	Соотв.	-	-	-	-	-
12	ГОСТ IEC 61000-4-18 Устойчивость к затухающей колебательной волне «Провод-провод»: «Провод-земля»:	±1 кВ ±2,5 кВ	±1 κB ±2,5 κB	±2,5 кВ (Э)	±1 кВ ±2,5 кВ	-	-
13	ГОСТ Р 51317.4.16 Устойчивость к кондуктивным помехам в полосе частот от 0 до 150 кГц Длительно: Кратковременно 1 с:	10 B 100 B	10 B 100 B	-	-	-	-
14	ГОСТ Р 51317.4.14. Устойчивость к колебаниям напряжения сети электропитания		-	-	-	-	-
15	ГОСТ Р 51317.4.28. Устойчивость к изменениям частоты питающего напряжения	±15%-1 c	-	-	-	-	-
16	МЭК 61000-4-29 Устойчивость к динамическим изменениям напряжения сети электропитания	30%-1 c 60%-0,1 c 100%-0,5 c	30%-1 c 60%-0,1 c 100%-0,5 c	-	-	-	-
17	ГОСТ Р 51317.4.17 Устойчивость к пульсациям напряжения питания постоянного тока	10%	10%	-	-	-	-
10	ГОСТ 30805.22-2013 (ГОСТ Р 51318.22-2006) Оборудование информационных технологий. Радиопомехи индустриальные.	Класс А					
18	ГОСТ Р 51318.11-2006 Промышленные, научные, медицинские и бытовые (ПНМБ) высокочастотные устройства. Радиопомехи индустриальные.	Класс А					

⁽ЕК) – помеха подается через электромагнитные клещи,

⁽Э) – помеха подается на экран кабеля,

⁽УСР) – устройство связи-развязки,

⁼²²⁰В, ~220В – порты питания постоянного и переменного тока

3 Функциональные возможности

ЭНКМ-3 функционирует на базе микроконтроллера со специально разработанным для него программным обеспечением, т.н. прошивкой (firmware).

3.1 Опрос устройств

УСЛ Э**Н**КМ-3 поддерживает опрос устройств, способных осуществлять протоколам Modbus, M9K 60870-101/103/104, информационный обмен по опционально МЭК 61850 (GOOSE, MMS), а также по собственным протоколам ряда Максимальное устройств, перечисленных ниже. количество параметров, обрабатываемых от одного устройства, приведено в табл. 3.1:

Таблица 3.1

Протокол	TC	ти	ТУ	Уставки
МЭК 60870-101/104	4096	8128	256	-
МЭК 60870-103	64	64	256	-
МЭК 61850 GOOSE	64	64	-	-
MЭK 61850 MMS	64	64	256	-
Modbus RTU/TCP	64	64	256	256
SNMP	-	64	-	-
SPA-Bus	64	64	-	-

Для запрашиваемых параметров при настройке указывается тип данных (дискретная или аналоговая величина), формат аналоговых данных (int16, int32, float), масштабный коэффициент.

Внимание! При опросе устройств нижестоящего уровня через интерфейсы Ethernet по протоколам МЭК-60870-5-104, Modbus TCP и МЭК 61850 MMS необходимо учитывать, что максимальное количество устройств, опрашиваемых по этим протоколам, не может превышать 48.

3.1.1 Счетчики электрической энергии

Таблица 3.2. Счетчики электрической энергии

Попица 5.2. е 1	Меркурий		НЗИФ	Elster	Гран	Энерго	мера
Параметры	23X	20X	СЭТ4ТМ.02	A1800*	CC-301	ЦЭ6850М	CE-30X
Ua, Ub, Uc	+	+	+	+	+	+	+
Uab, Ubc, Uca			+			+	
U лин. ср.				+			
la, lb, lc	+	+	+	+	+	+	+
I средний				+			
Pa, Pb, Pc,	+		+	+	+	+	+
Р суммарная	+	+	+	+	+		
Qa, Qb, Qc,	+		+	+	+	+	+
Q суммарная	+	+	+	+	+		
Sa, Sb, Sc	+		+	+		+	
S суммарная	+	+	+	+			
F	+	+	+	+	+	+	+
Cos a, Cos b,	+		+	+	+	+	+
Cos c	т		т	т	т	т	т
Cos средний	+	+	+	+			+
Wh+, Wh-, varh+, varh-	+	+	+	+	+	+	+

^{* -} A1800 (Эльстер Метроника) поддержаны только по протоколу ANSI.

3.1.2 Измерительные преобразователи

Для опроса современных МИП применяются стандартные протоколы обмена МЭК 60870-101/104, GOOSE, MMS. Для опроса устаревших версий МИП существует поддержка некоторых серий приборов, приведенных в табл. Таблица 3.3.

Таблица 3.3. Измерительные преобразователи

Запрашиваемые	ЭНИП-2	AET	ПЦ6806-03
параметры	(FT3)*	ALI	ПЦ6806-07
Ua, Ub, Uc	+	+	+
U среднее фазное	+		+
Uab, Ubc, Uca	+	+	
U среднее линейное	+		+
la, lb, lc	+	+	+
I средний	+		+
Ра, Рb, Рc, Р суммарная	+	+	+
Qa, Qb, Qc, Q суммарная	+	+	+
Sa, Sb, Sc	+	+	
S суммарная		+	
F	+	+	+
Cos a, Cos b, Cos c	+		
Cos средний	+		
Wh+, Wh-, varh+, varh-	+		+
TC	18		18
ТУ	2		1
Синхронизация времени	+	+	+

^{* -} опрос старых версий ЭНИП-2 без USB.

3.1.3 Устройства РЗА, автоматики и прочие

Для сбора данных с устройств РЗА применяются протоколы МЭК 60870-101/103/104, GOOSE, MMS.

Часто можно встретить использование протокола Modbus. В силу отсутствия в спецификации Modbus востребованных стандартных функций, таких как синхронизация времени и др., для разных типов терминалов осуществляется отдельная поддержка см. табл. 3.4. Запрос прочих параметров, таких как ТС, ТИ и в некоторых случаях ТУ, реализуются в ЭНКС-3м стандартным «Modbus» устройством.

Таблица 3.4. Устройства РЗА и автоматики.

Устройство	Поддерживаемые параметры	
БЗП-1/2/3	Состояние защит, ТС, измерения, ТУ	
Алтей-БЗП/УЗТ/ОЗТ	Состояние защит, ТС, измерения, ТУ	
ABB Emax/Tmax	Положение выключателя, измерения	
Сириус,	ТУ, синхронизация времени	
Sepam	Синхронизация времени	
БМР3	Синхронизация времени	
БЭМН	Синхронизация времени	

Таблица 3.5. Модули ввода/вывода, прочие устройства.

Устройство	Поддерживаемые параметры
ЭНМВ (FT3)*	TC124, TY1, TY2
MC1201	ТУ13
MC1202	TC18
MC1210	Аналоговый вход
MC1218	Температура 14
MC1220	Номер положения переключателя автотрансформатора

^{* -} опрос старых версий ЭНМВ-1 без USB.

3.1.4 **M9K 60870-5-101/104**

Поддерживаемые параметры:

- Телесигнализация (1, 3, 7, 30, 31, 33 типы кадров);
- Интегральные и текущие телеизмерения (9, 11, 13, 15, 34, 35, 36, 37 типы кадров);
- Телеуправление (45, 46 команды);
- Команда опроса (100 команда: опрос станции, запрос групп);
- Команда опроса счетчиков (101 команда);
- Команда синхронизации часов (103 команда).

3.1.5 **Modbus**

Поддерживаемые параметры:

Тип данных	Функции чтения	Функции записи
Дискретные данные	01, 02, 03, 04	05, 06
Аналоговые данные, один регистр Int16	03, 04	06
Аналоговые данные, сдвоенные регистры Int32, float	03, 04	-

Для аналоговых данных при настройке доступен выбор порядка байт в регистре.

3.1.6 **M9K 61850 8-1 – GOOSE**

ЭНКМ-3 поддерживает подписку на GOOSE сообщения в рамках стандарта МЭК 61850 8-1.

Поддерживаемые типы данных в GOOSE-сообщениях: Boolean, Quality, Timestamp, SPS, DPC, INT32, Float. Arrays не поддерживаются.

3.1.7 **M9K 60870-5-103**

В ЭНКМ-3 реализован канальный (FT1.2) и пользовательский уровень протокола в соответствии с ГОСТ Р МЭК 60870-5-103-2005.

На прикладном уровне ЭНКМ-3 осуществляет прием следующих ASDU:

- Для телесигнализации:
 - <1> сообщение с меткой времени;
 - <2> сообщение с меткой времени с относительным временем;
- Для телеизмерений:
 - <3> измеряемые величины, набор типа 1;
 - <9> измеряемые величины, набор типа 2.

ASDU в направлении управления:

- <6> Синхронизация времени;
- <7> Инициализация общего опроса;
- <20> Общая команда.

3.1.8 **SPA-Bus**

ЭНКМ-3 поддерживает опрос устройств по протоколу SPA-Bus. Доступны однопозиционные и двухпозиционные ТС, ТИ, синхронизация часов.

3.2 Синхронизация часов

- 3.2.1 Устройство ЭНКМ-3 поддерживает прием сигналов точного времени с точностью до 1 мс от следующих источников:
 - встроенный ГЛОНАСС/GPS приёмник;
 - устройства вышестоящего уровня (команда 103 в протоколах МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004);
 - SNTP сервер;
- 3.2.2 При потере сигнала спутника, когда используется метод синхронизации от внутреннего приёмника, прибор автоматически переключается в режим синхронизации от устройств вышестоящего уровня. Алгоритм синхронизации внутренних часов ЭНКМ-3 приведен на рис. 3.1.

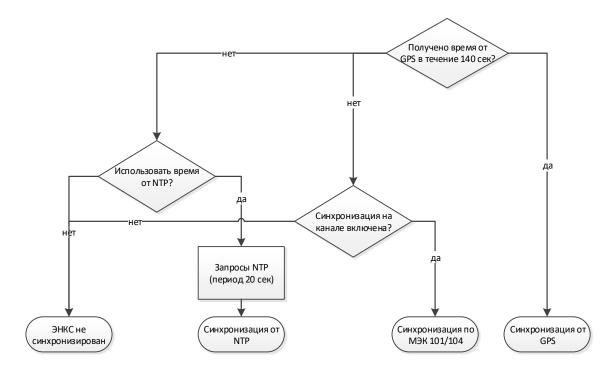


Рисунок 3.1. Алгоритм синхронизации внутренних часов в ЭНКМ-3

- 3.2.3 При отсутствии внешней синхронизации отклонение времени внутренних часов ЭНКМ-3 не превышает ±0,4 с/сутки.
- 3.2.4 Если опрашиваемое устройство имеет внутренние часы, ЭНКМ-3 осуществляет передачу сигналов точного времени для устройств, указанных в табл. 3.6.

Таблица 3.6

таолица э.о	
Устройства	Периодичность передачи сигналов точного времени
МЭК 60870-5-101/104	2 раза в минуту на 15й и 45й секунде
с поддержкой команды 103	
МЭК 60870-5-103 с поддержкой ASDU 6	

Терминалы РЗА: Sepam, БМРЗ, БЭМН	
Счетчики электроэнергии: Меркурий 23X, СЭТ-4TM, A1800*, СС-301, ЦЕ6850M, СЕ30X	два раза в час (в периоды с 10 по 20 и с 40 по 50 минуты часа)
Терминалы РЗА: БЗП-1/2/3, Алтей-БЗП/УЗТ/ОЗТ	
SNTP	зависит от настроек синхронизируемого устройства

^{*} дополнительно при настройке ЭНКМ-3 можно выставить галку *Коммерческий учёт*, тогда синхронизация внутренних часов A1800 будет производиться раз в сутки не более чем на 4 секунды.

При потере синхронизации часов ЭНКМ-3 через 30 минут прекращает выдачу команд синхронизации опрашиваемым устройствам.

3.3 Прием и передача команд телеуправления

- 3.3.1 ЭНКМ-3 поддерживает прием команд телеуправления по следующим протоколам:
 - ГОСТ Р МЭК 60870-5-104/104: Single command <45>, Double command <46>, Set point command <48> (последняя может ретранслироваться только в функцию h06 для Modbus-устройств);
 - Modbus RTU/TCP: Force single coil (h05), Write single holding register (h06);
 - M3K 61850: direct-with-normal-security, sbo-with-normal-security, direct-with-enhanced-security.
- 3.3.2 ЭНКМ-3 позволяет отправлять команды управления опрашиваемым устройствам:
 - FOCT P M3K 60870-5-104/104: Single command <45>, Double command <46>;
 - Modbus RTU/TCP: Force single coil (h05); Write single holding register (h06);
 - ГОСТ Р МЭК 60870-5-103: Общая команда (ASDU 20);
 - Терминалы РЗА: «Сириус», «БЗП», «Орион-РТЗ», «Алтей».

Для устройств, опрашиваемых по МЭК 60870-5-101/104, команда ТУ ретранслируется с теми же параметрами, с которыми пришла команда в ЭНКМ-3 от вышестоящего уровня.

Если вышестоящий уровень передаёт команду по протоколу Modbus, опрашиваемое устройство должно поддерживать приём команд без предварительного выбора (функция Direct control в ЭНИП-2 и ЭНМВ-1). Время удержания задается при настройке.

Для устройств, опрашиваемых по МЭК 60870-5-103, параметры ON/OFF команды ТУ определяются в команде от вышестоящего уровня.

Для устройств, опрашиваемых по Modbus, при настройке задаются адреса ретрансляции команд включения и отключения, а также время удержания выхода.

- 3.3.3 ЭНКМ-3 поддерживает автоматическую отправку команд телеуправления опрашиваемым устройствам при выполнении заданных условий (триггером может служить логическое выражение, ТС, уставка и т.п.). Все настройки осуществляются с помощью ПО «Конфигуратор ЭНКС».
- 3.3.4 Результат выполнения команд ТУ хранится в энергонезависимом журнале. Глубина журнала 100 записей. Чтение журнала доступно в ПО «ЭНКС Конфигуратор».

3.4 Телесигнализация

- 3.4.1 ЭНКМ-3 поддерживает сбор и передачу одно- и двухпозиционных ТС. Прием двухпозиционных ТС доступен по протоколам МЭК-60870-101, МЭК-60870-104 и МЭК 61850 (GOOSE).
- 3.4.2 Все принятые сигналы ТС сохраняются в энергонезависимый журнал глубиной 289 событий. Чтение журнала доступно в ПО «ЭНКС Конфигуратор».
- 3.4.3 В ЭНКМ-3 доступно объединение двух однопозиционных сигналов в один двухпозиционный. При настройке задаются два сигнала от одного или разных устройств, а также таймаут ожидания переключения. В течение этого таймаута промежуточное значение сигнала (00) не будет передаваться на вышестоящий уровень.

3.5 Логические выражения

3.5.1 В ЭНКМ-3 доступны для настройки логические выражения, источниками данных для которых могут служить любые дискретные сигналы прибора: ТС, команды ТУ, уставки, а также другие логические выражения.

Результат логического выражения может быть передан по любому поддерживаемому протоколу на верхний уровень в виде ТС или использован в качестве управляющего воздействия для опрашиваемого устройства.

- 3.5.2 Для логических выражений доступны логические и временные операции:
 - И (AND);
 - ИЛИ (OR);
 - HE (NOT);
 - Исключающее ИЛИ (XOR);
 - Сравнение (EQ);

- RS-trigger (RS-FF);
- Формирование импульса;
- Расширение минимального импульса;
- Увеличение импульса;
- Задержка сигнала.
- 3.5.3 Логические выражения могут используются для выполнения программных оперативных блокировок, автоматизации переключений (ABP), управления различными системами и др.). Настройка выражений осуществляется с помощью графического интерфейса в ПО «Конфигуратор ЭНКС»:

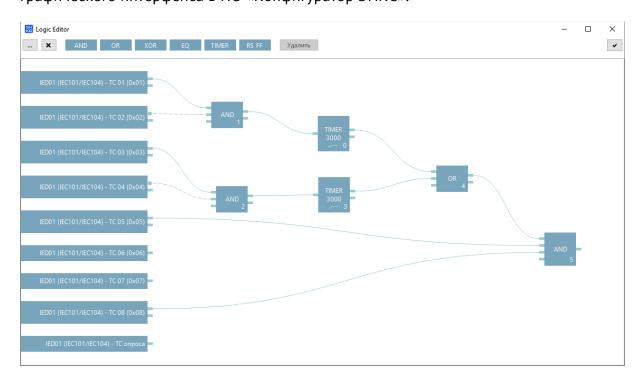


Рисунок 3.1. Настройка логических выражений в ПО «Конфигуратор ЭНКС»

3.6 МЭК 60870-5-101-2006 и МЭК 60870-5-104-2004

3.6.1 Для передачи данных ЭНКМ-3 реализован канальный (FT1.2) и пользовательский уровень протоколов в соответствии с ГОСТ Р МЭК 60870-5-101-2006 и ГОСТ Р МЭК 60870-5-104-2004.

На пользовательском уровне реализованы следующие команды:

- телеуправление 45, 46 команды;
- запись уставок 48 команда;
- синхронизация времени 103 команда;

- общий опрос 100 команда;
- запрос энергий 101 команда;

При передаче данных поддерживаются следующие типы данных:

- при передаче TC 1, 3, 7, 30, 31, 33;
- при передаче ТИТ 9, 11, 13, 34, 35, 36;
- при передаче ТИИ 15, 37;

Поддерживаются следующие причины передачи – 1, 2, 3, 5, 6, 7, 8, 9, 10, 20-36, 37-41, 47, а также взводится в случае необходимости бит P/N в причине передачи.

Бит SQ поддерживает оба состояния: 0 и 1.

На канальном уровне (FT1.2) поддерживается адресное поле длиной один или два байта. На пользовательском уровне длины причины передачи - один или два байта, общего адреса ASDU – один или два байта, адреса объекта информации - два или три байта. Вариант причины передачи 2-2-3 должен использоваться для каналов ГОСТ Р МЭК 60870-5-104-2004 или ГОСТ Р МЭК 60870-5-101-2006, которые далее «конвертируются» в протокол в соответствии с ГОСТ Р МЭК 60870-5-104-2004.

3.6.2 Спорадический алгоритм

Спорадический режим передачи данных подразумевает передачу параметра при определенных условиях: изменение значения параметра выходит за переделы заранее заданного значения (уставки или апертуры). Величина допустимого отклонения может задаваться как в абсолютных, так и относительных величинах (в процентах от последнего переданного значения). Также могут задаваться две границы, при пересечении которых параметр ставится в очередь на передачу. Данный режим удобно использовать для контроля напряжения, когда необходимо передать параметр при выходе его за определенные рамки.

Для дискретных сигналов доступен сверхспорадический алгоритм – телесигнализация передаётся в первую очередь, не дожидаясь окончания цикла опроса устройства.

3.6.3 Периодический алгоритм

В данном режиме телеизмерения передаются на вышестоящего уровень через заданные промежутки времени (кратность 1 мин).

3.6.4 Фоновое сканирование

Фоновое сканирование имеет низший приоритет в передаче параметров по сравнению со спорадическим и периодическим алгоритмами. Данные отправляются только когда свободны буферы для передачи в соответствии с ГОСТ Р МЭК 60870-5-101–2006 (ГОСТ Р МЭК 60870-5-104–2004).

Передача ТИ по фоновому алгоритму происходит при любом изменении параметра или его атрибутов качества.

Передача ТС по фоновому алгоритму происходит периодически с заранее настроенным интервалом (кратность 1 мин) или при изменении атрибутов качества.

3.7 M9K 61850 8-1

ЭНКМ-3 (hw 6) опционально поддерживает передачу данных по протоколу МЭК 61850-8-1 ред. 1.

ЭНКМ-3 выступает в роли MMS сервера и поддерживает:

- настраиваемые логические устройства (до 16);
- настраиваемые логические узлы (до 256);
- настраиваемые наборы данных (до 32, в каждом до 32 параметров);
- функции управления;
- публикацию GOOSE сообщений (до 100);
- подписку на GOOSE сообщения (до 64);
- небуферизируемые отчеты (до 100).

Привязка измерений к узлам модели МЭК 61850 осуществляется с помощью ПО «Конфигуратор ЭНКС».

Поддерживаемые логические узлы:

Код	Группа	Логический узел	Описание
L	Системные	LLN0	Логический узел 0
	логические узлы	LPHD	Параметры физического устройства
С	Управление	CILO	Блокировка управления коммутационным аппаратом
		CSWI	Управление выключателем
G	Узлы общего назначения	GGIO	Общий ввод/вывод данных
М	Учет и измерения	MMTR	Энергия трехфазной сети
		MMXN	Параметры однофазной сети
		MMXU	Параметры трехфазной сети
		MSQI	Последовательности и небаланс
Р	Функции защиты	PTOC	Максимальная токовая защита
		PTRC	Условия для отключения при срабатывании защит

Код	Группа	Логический узел	Описание
R	Функции, связанные с защитой	RBRF	Отказ выключателя
Т	Измерительный	TCTR	Трансформатор тока
	трансформатор	TVTR	Трансформатор напряжения
х	Коммутационная аппаратура	XCBR	Выключатель (КА с возможностью отключения токов КЗ)
		XSWI	Коммутатор (КА без возможности отключения токов K3)
Z	Другое	ZAXN	Вспомогательная сеть
	оборудование	ZBAT	Аккумуляторная батарея

3.8 Modbus RTU/TCP

ЭНКМ-3 позволяет передавать данные по протоколам Modbus TCP/RTU.

Поддерживаемые функции:

- h01 read coil (для телесигнализации);
- h02 read input status (для TC опроса);
- h03 read holding registers (для телеизмерений); доступны двух- и четырехбайтные данные.
- h05 write single coil (для телеуправления).
- h06 write single holding register (для записи в регистр).

3.9 Атрибуты качества параметров

Атрибуты качества присваиваются каждому параметру при передаче по протоколам МЭК 60870-5-101/104 и SNMP.

При отсутствии связи с опрашиваемым устройством всем относящимся к нему параметрам выставляются признаки отрицательного качества.

Для МЭК 60870-5-104:

- Бит IV выставляется в том случае, если при включении ЭНКМ-3 опрашиваемое устройство не ответило на запрос данных (за исключением устройств, опрашиваемых по МЭК-101/104, для которых при отсутствии связи данные не передаются на вышестоящий уровень);
- Бит NT выставляется в случае, когда устройство перестаёт отвечать на запросы.

Атрибуты качества параметров устройств, опрашиваемых по протоколам МЭК-60870-101/104, ретранслируются без изменений.

3.10 Хранение ретроспективы измерений и состояний

- 3.10.1 При изменении состояния ТС опрашиваемого устройства, новое значение ТС сохраняется в энергонезависимой памяти с меткой времени, присвоенной устройством или ЭНКМ-3. Максимально журнал ТС содержит 400 записей, при переполнении будет происходить перезапись самых старых событий. В протоколах МЭК 60870-5-101/104 при запросе по 100-й команде 16-й группы будет передана вся имеющаяся ретроспектива ТС.
- 3.10.2 Для каждого канала, настроенного на протокол МЭК 60870-5-101/104, есть возможность включить запись архивов ТИ и ТС в энергозависимую память. В архив записывается не менее 1000 последних значений, предназначенных для выдачи по спорадическому алгоритму. При потере связи с вышестоящим уровнем и последующем восстановлении, клиенту будут переданы все накопившиеся данные архивов ТС и ТИ.

В случае переполнения архивов новые данные записываются вместо самых старых записей.

При отключении питания прибора архивы сбрасываются.

3.11 Конфигурирование УСД

Конфигурация УСД хранится в энергонезависимой памяти.

Конфигурирование осуществляется с помощью ПО «Конфигуратор ЭНКС».

ПО поддерживает следующие способы подключения к УСД:

- через любой интерфейс RS-232/485 по протоколу ГОСТ Р МЭК 60870-5-101;
- через любой интерфейс Ethernet по протоколу ГОСТ Р МЭК 60870-5-104;
- через интерфейс USB.

Подробнее о настройке прибора см. пункт 6.

3.12 Резервирование опрашиваемых устройств

Резервирование устройств позволяет опрашивать одно устройство по разным интерфейсам связи. При настройке ЭНКМ-3 для каждого опрашиваемого устройства указываются параметры подключения и запрашиваемые параметры. Для добавления альтернативного интерфейса необходимо в настройках резервирования указать резервные параметры подключения, список передаваемых параметров остается прежним.

ЭНКМ-3 ведёт опрос устройства одновременно по двум интерфейсам. При отсутствии ответа от основного устройства в течение нескольких циклов опроса происходит переключение на резервное.

3.13 Режим «сквозного канала»

Режим «сквозного канала» (RS-TCP) – режим обмена информацией между вышестоящим уровнем и устройствами, подключенными к порту RS-485/232 УСД, при помощи TCP-соединения. Процесс обмена заключается в инкапсуляции данных, проходящих через порт RS-485/232 в TCP-соединение без осуществления какой-либо обработки, при этом на вышестоящем уровне должно использоваться ПО, позволяющее осуществлять прием и передачу инкапсулированных данных.

Через «сквозной канал» можно напрямую подключаться к опрашиваемым устройствам поочередно, например, для их конфигурирования, считывания журналов, осциллограмм и т.п. Одно из 14 доступных ТСР-соединений настраивается на режим сквозного проброса пакетов из ТСР в последовательный интерфейс RS485/232 и обратно. Т.к. обмен происходит на скоростях, характерных для последовательных интерфейсов, при фактическом подключении по Ethernet, то используемое программное обеспечение должно корректно обрабатывать задержку, возникающую при получении ответов на отправляемые запросы.

При открытии «сквозного канала» на порт, опрос всех устройств по данному порту прекращается.

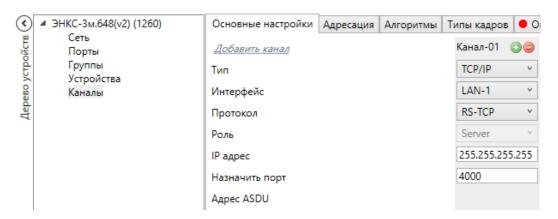


Рисунок 3.2. Настройка сквозного канала в ПО «Конфигуратор ЭНКС»

Для настройки УСД на работу в данном режиме в ПО «Конфигуратор ЭНКС» во вкладке «Каналы» необходимо указать интерфейс, по которому будет доступен «сквозной канал», выбрать протокол «RS-TCP», указать IP-адрес разрешенного клиента и стартовый адрес TCP-порта для подключения.

Во вкладке «Порты» отображается TCP-порт для каждого интерфейса:

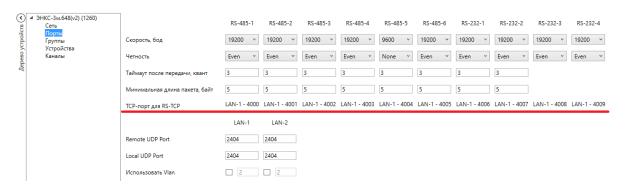


Рисунок 3.3. Настройка портов для опроса нижестоящих устройств в ЭНКМ-3

При данной настройке для открытия «сквозного канала» на интерфейс RS-485-4 необходимо подключиться к IP LAN1 TCP-порт 4003.

Режим «сквозного канала» позволяет подключаться к устройствам (счетчикам электроэнергии, ЦИП, терминалам РЗА и др.), выпускаемых различными производителями. При этом при использовании «сквозного канала» для настройки устройств – данную функцию должно поддерживать ПО, используемое для конфигурирования устройств. При использовании «сквозного канала» для передачи данных на вышестоящий уровень – данную функцию должно поддерживать ПО вышестоящего уровня.

Среди устройств, выпускаемых ООО «Инженерный центр «Энергосервис», настройку в данном режиме поддерживают измерительные преобразователи ЭНИП-2 и модули ввода-вывода ЭНМВ. При этом необходимо произвести соответствующую настройку в ПО «ES Конфигуратор», применяемом для конфигурирования данных устройств.

Например, для настройки преобразователей ЭНИП-2, опрашиваемых через RS-485-4, в ПО «ES Конфигуратор» необходимо указать соответствующий способ подключения, а также задать необходимые сетевые параметры.

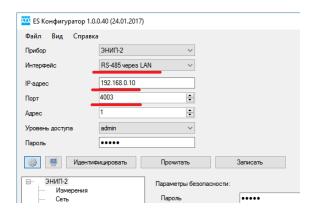


Рисунок 3.4. Пример настройки для подключения к ЭНИП-2 с использованием «сквозного канала», предоставляемого УСД ЭНКМ-3

3.14 Ввод/вывод дискретных сигналов

Таблица 3.7. Характеристики дискретных сигналов

Модификация	Дискретные входы	Дискретные выходы
ЭНКМ-3400	4 DI: тип "сухой контакт"; 24 B=	-
ЭНКМ-3430	4 DI: тип "сухой контакт"; 24 B=	3 DO: электромеханическое реле; 6 A (250 B~), 3/0.35/0.2 A (30/110/220 B=)
ЭНКМ-3421 ЭНКМ-3422	4 DI: тип "сухой контакт"; 24 B=	2 DO: электромеханическое реле; 6 A (250 B~), 3/0.35/0.2 A (30/110/220 B=)
ЭНКМ-3640	6 DI: тип "мокрый контакт"; 24 B=	4 DO: электронный ключ; 0.1 A (300 B= / 250 B~)
ЭНКМ-36(12)40	6 DI: тип "мокрый контакт"; 12 B=	4 DO: электронный ключ; 0.1 A (300 B= / 250 B~)
ЭНКМ-3720	6 DI: тип "мокрый контакт"; 24 B= 1 DI: тип «сухой контакт»; 9 B=	2 DO: электронный ключ; 0.1 A (300 B= / 250 B~)
ЭНКМ-3800	8 DI: тип "сухой контакт"; 24 B=	-
ЭНКМ-3612	6 DI: тип "мокрый контакт"; 24 B=	-
ЭНКМ-31242	12 DI: тип "мокрый контакт"; 24 B=	3 DO: электромеханическое реле; 8 A (250 B~), 8/0.25 A (30/220 B=)

Для модификаций ЭНКМ-3-...-A2B1E1 доступен дополнительный дискретный вход, который выведен на разъем RJ45 интерфейса RS-232. Схема подключения приведена на рисунке 3.5:

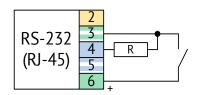


Рисунок 3.5. Схема подключения дополнительного дискретного входа.

Сопротивление резистора R 5,1..10 кОм. Напряжение дискретного входа 8..9,5 В, ток в замкнутом состоянии 3,3 мА.

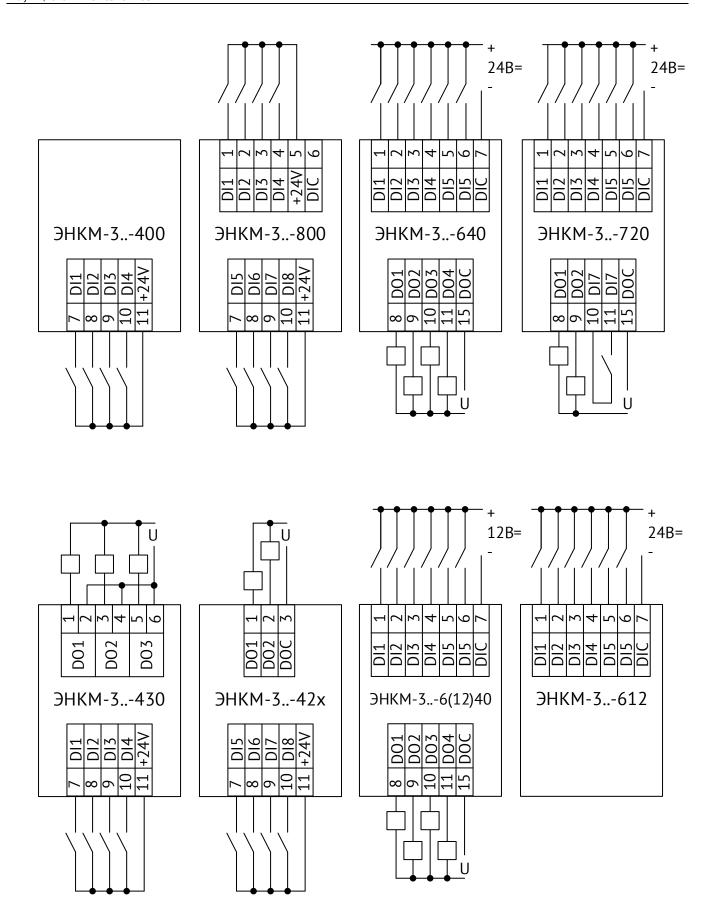


Рисунок 3.6. Схема подключения основных дискретных входов и выходов.

3.15 Ввод аналоговых сигналов

Модификации ЭНКМ-3-X-X-421 имеют 1 встроенный аналоговый вход -20...20 мА. Модификации ЭНКМ-3-X-X-422 имеют 2 встроенных аналоговых входа 0...20 мА.

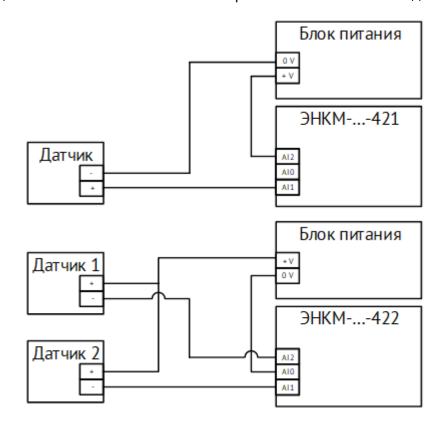


Рисунок 3.7. Подключение резистивных датчиков

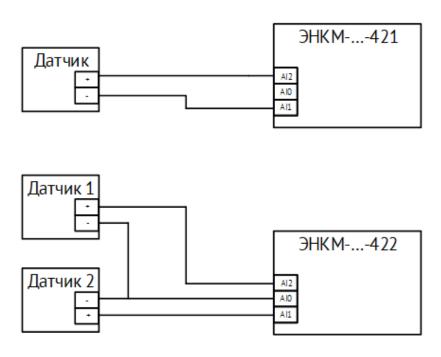


Рисунок 3.8. Подключение токовых датчиков

3.16 Управление приводом

- 3.16.1 Модификации ЭНКМ-3-...-612 и ЭНКМ-3-...-1242 позволяют управлять электрическим двигателем приводов коммутационных аппаратов. Поддерживается измерение входного напряжения, подача питания на двигатель прямой и обратной полярности, а также плавный пуск с использование ШИМ. Дополнительно доступно измерение температуры с помощью внешнего терморезистора для автоматического управления обогревом привода.
- 3.16.2 Модификация ЭНКМ-3-...-1242 представляет собой совмещённые в одном корпусе УСД ЭНКМ-3-...-612 и модуль ввода/вывода ЭНМВ-1-6(24)/3R-24-A1. Характеристики полностью совпадают с характеристиками соответствующих устройств. Документация на ЭНМВ-1: https://enip2.ru/documentation/re-enmv.423000.001.pdf

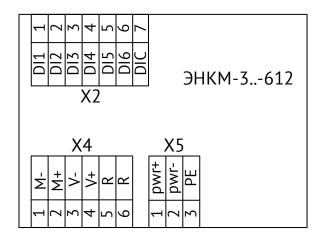


Рисунок 3.9. Внешний вид ЭНКМ-3-24-А3Е1-612

Рисунок 3.10. Лицевая панель ЭНКМ-3-24-А3Е1-1242

3.16.3 Обозначение клемм ЭНКМ-3-...-612 и ЭНКМ-3-...-1242 приведено на рис. 3.11.

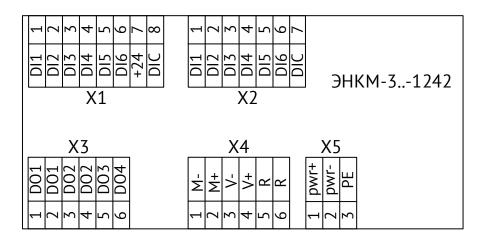


Рисунок 3.11. Обозначение клемм ЭНКМ-3-...-612 и ЭНКМ-3-...-1242

Х1 – дискретные входы ЭНМВ-1

№ контакта	Описание
1	Дискретный вход 1
2	Дискретный вход 2
3	Дискретный вход 3
4	Дискретный вход 4
5	Дискретный вход 5
6	Дискретный вход 6
7	Встроенный источник питания дискретных входов, +24 В
8	Общая клемма дискретных входов группы 1

Х2 – дискретные входы ЭНКМ-3

№ контакта	Описание
1	Дискретный вход 1
2	Дискретный вход 2
3	Дискретный вход 3
4	Дискретный вход 4

5	5	Дискретный вход 5
6	5	Дискретный вход 6
7	7	Общая клемма дискретных входов группы 2

Х3 – дискретные выходы ЭНМВ-1

№ контакта	Описание
1	Дискретный выход 1
2	Дискретный выход 1
3	Дискретный выход 2
4	Дискретный выход 2
5	Дискретный выход 3
6	Дискретный выход 3

Х4 – аналоговые сигналы ЭНКМ-3

№ контакта	Описание
1	Двигатель, выход +
2	Двигатель, выход -
3	Питание двигателя, вход +
4	Питание двигателя, вход -
5	Терморезистор
6	Терморезистор

Х5 – питание устройства

№ контакта	Описание
1	Питание ЭНКМ-3, вход +
2	Питание ЭНКМ-3, вход -
3	Защитное заземление

Внимание! Группы контактов X4 и X5 используют общую отрицательную клемму и не имеют гальванической развязки.

3.16.4 Поддерживаются двигатели с номинальным напряжением 24 В, мощностью до 250 Вт, например, MY1016Z2 или аналогичные. Двигатель подключается к клеммам X4:1 и X4:2, питание двигателя подключается к клеммам X4:3 и X4:4. Управление двигателем производится по командам телеуправления ОN (подается прямая полярность) и ОFF (подается обратная полярность). Остановка двигателя производится при достижении конечного положения аппарата (отслеживается по концевым выключателям) или по истечению заданного таймаута времени. При настройке дополнительно можно указать минимальное входное напряжение для управления, и дискретный сигнал, при включении которого управление будет заблокировано.

- 3.16.5 Для измерения температуры используется терморезистор с номинальным сопротивлением 10 кОм.
- 3.16.6 Для отображения текущего положения коммутационного аппарата, сигналов блокировки, диагностической информации и т.п. к ЭНКМ-3-...-612 и ЭНКМ-3-...-1242 могут подключаться модули индикации ЭНМИ-7. Порт СОМ-1 обеспечивает питание ЭНМИ-7 и обмен информацией по протоколу Modbus.

4 Комплектность

В комплект поставки устройств сбора данных ЭНКМ-3 входят:

- Устройство сбора данных ЭНКМ-3 - 1 шт.; - формуляр ЭНКМ.403570.004 ФО - 1 экз.; - CD (включает руководство по эксплуатации ЭНКМ.403570.004 РЭ, гартию программное обеспечение и информационные материалы) партию продукции); - Кабель mini-USB − USB, 1 м - 1 шт.

Необходимая документация, а также обновления ПО всегда доступны на сайте:

http://www.enip2.ru

5 Использование по назначению

5.1 Эксплуатационные ограничения

УСД может быть использовано по своему прямому назначению без каких-либо ограничений.

Ввод в эксплуатацию устройства производится только после проведения монтажных и пуско-наладочных работ, которые должны выполняться специализированными организациями, имеющими право на производство этих работ.

Монтаж и наладка устройства в полном объеме должны выполняться заказчиком в соответствии с требованиями эксплуатационной документации.

Устройство должно обслуживаться специально подготовленным персоналом в соответствии с требованиями эксплуатационной документации.

На всех стадиях эксплуатации УСД следует руководствоваться «Правилами технической эксплуатации электроустановок потребителей», утверждёнными Минэнерго РФ 13.01.2003 г., и «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок», утверждёнными Главгосэнергонадзором 01.07.2001 г.

Место расположения УСД при эксплуатации должно обеспечивать свободный доступ к УСД, а также возможность размещения приборов для обслуживания; удобную подводку кабелей внешних подключений.

Монтажные и ремонтные работы с устройством разрешается проводить только при полном снятии напряжения. Рядом должно быть вывешен плакат «Не включать - работают люди».

Обеспечение пожарной безопасности помещения, в котором устанавливается устройство - по ГОСТ 12.1004-85.

5.2 Общие указания по монтажу

Вблизи установленного УСД не допускается производить слесарные работы, которые могут привести к попаданию мелких частиц внутрь корпуса.

Все работы по монтажу и эксплуатации производить с соблюдением действующих правил, обеспечивающих безопасное обслуживание и эксплуатацию электроустановок. Монтаж должен осуществлять персонал с соответствующей квалификацией.

• Крепление устройства осуществить на 35 мм DIN-рельс с помощью встроенного крепления.

• Цепи питания, телесигнализации, телеуправления и аналоговых входов допускается подключать проводами сечением не более 2,5 мм².

5.3 Подключение к интерфейсам

Примечание: Для защиты интерфейсов RS-485 рекомендуется использовать устройства защиты от перенапряжения ESP-485-X, где X – количество каналов (ESP-485 выпускаются на один или два канала).

Для подключения к интерфейсам следовать указаниям таблицы 5.1:

Таблица 5.1

Интерфейс	Сигнал/контакт		Устройство (RJ45)
	A (data+)	7	
RS-485	B (data-)	8	
	GND	5	
	Питание: +24 В	1, 2	
RS-485 c	Питание: 0 В	3, 4	
питанием	A (data+)	7	
24B*	B (data-)	8	
	GND	5	
	Rx	3	
RS-232	Tx	4	
	GND	5	
LAN	TX+ (Transmit Data+)	1	
	TX- (Transmit Data-)	2	
	RX+ (Receive Data+)	3	1 2 3 4 5 6 7 8
	RX- (Receive Data-)	6	

^{* -} для модификаций ЭНКМ-3-24-..-720, ЭНКМ-3-24-..-612

Каналы устройства могут быть подключены к оконечному оборудованию передачи данных (АПД) или напрямую к оборудованию вышестоящего уровня (контроллер, персональный компьютер (ПЭВМ, сервер)).

Определение параметров работы и алгоритмов устройства производится путем настройки устройства при помощи программного обеспечения «Конфигуратор ЭНКС». ПО поставляется вместе с ЭНКМ-3. Для подробного описания работы с ПО «Конфигуратор ЭНКС» необходимо обратиться к руководству пользователя <u>ЭНКС.403500.001 ПО.</u>

6 Настройка УСД

Техническое обслуживание УСД ЭНКМ-3 осуществляется с помощью ПК (стационарной или переносной, оборудованная портами СОМ или Ethernet, с операционной системой Windows (7 или новее) с установленным программным комплексом в составе:

- ПО «Конфигуратор ЭНКС» программа конфигурирования ЭНКМ-3 (настройка параметров интерфейсов УСД, определение адресации, состава и алгоритмов передачи данных; опрос УСД);
- ПО «EsBootloader» программа для обновления внутреннего ПО УСД;
- ПО «ES Find IP» программа для обнаружения прибора в локальной сети.

Состав вспомогательного оборудования: кабель питания, сетевой кабель – патч-корд для подключения УСД в сеть Ethernet, испытательный стенд с установленным измерительным преобразователем (ЭНИП-2 или др.), датчиками отображения положения сигналов ТУ и органами имитации состояния ТС.

6.1 Обновление встроенного ПО

Внимание! Перед использованием прибора, рекомендуется скачать с официального сайта последнюю версию прошивки, и загрузить её в прибор с помощью ПО «EsBootloader».

Последние версии ПО и прошивок можно скачать с нашего сайта в разделе «Поддержка»: http://www.enip2.ru/support/

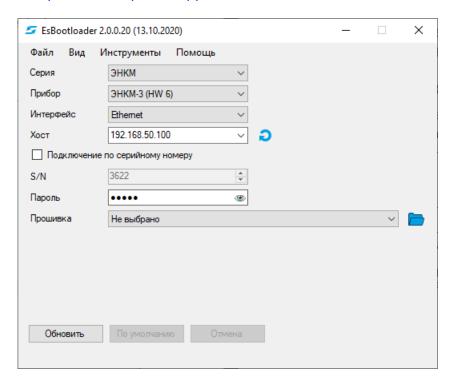


Рисунок 6.1. Прошивка УСД ЭНКМ-3 с помощью ПО «EsBootloader»

Алгоритм обновления прибора:

- Установите соединение с прибором через порт Ethernet, USB или RS-485.
- В ПО «EsBootloader» выберите Серия ЭНКМ-3, прибор ЭНКМ-3 нужной аппаратной версии, интерфейс USB, COM или Ethernet;
 - Для подключения по последовательному порту настройках подключения определите номер последовательного порта. Скорость можно оставить 19200, адрес 0;
 - Для подключения по Ethernet задайте IP адрес прибора, либо его серийный номер (в этом случае прибору будет временно присвоен IP адрес, указанный в поле IP).
- В поле «Прошивка» откройте файл с последней прошивкой для выбранного устройства или выберите «Загрузить актуальную прошивку» для автоматической загрузки последней версии.
- Для начала перепрошивки прибора в автоматическом режиме нажмите кнопку «Обновить». Начнется процедура стирания из прибора текущей микропрограммы, записи новой и проверки записанной микропрограммы. Если после нажатия на кнопку «Обновить» не начался процесс перепрошивки (это не относится к соединению по Ethernet), снимите, а затем снова подайте питание на прибор.

6.2 Конфигурирование ЭНКМ-3

Конфигурирование устройства осуществляется с помощью ПО «Конфигуратор ЭНКС». Описание конфигуратора приведено в Руководстве пользователя ПО «Конфигуратор ЭНКС» ЭНКС.403500.001 ПО. Скачать последнюю версию руководства можно здесь:

https://enip2.ru/documentation/po_encs.403500.001.pdf

Внимание! Подключение конфигуратором осуществляется через один из настроенных каналов ЭНКМ-3. Для подключения из локальной сети в настройках канала обязательно должен быть указан протокол IEC104(IEC101), режим – сервер, IP адрес – 255.255.255.255 (или адрес компьютера, с которого будет производится подключение), «Конфигурирование» - активировано. При отсутствии такого канала конфигурирование невозможно!

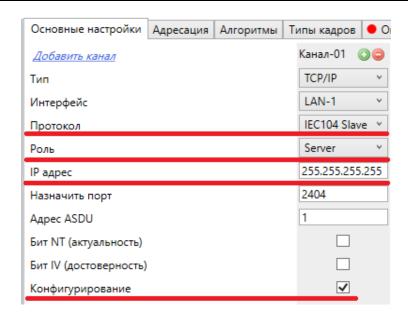


Рисунок 6.2 Пример настройки канала для передачи данных по МЭК 60870-5-104 на вышестоящие уровни, в том числе и для чтения/записи конфигурации по интерфейсу Ethernet

Внимание! Чтение и Запись конфигурации работают с ограничением – в одно и тоже время данные операции возможны только для одного канала. Данные операции становятся доступными по другому каналу только через 1 минуту после завершения конфигурирования (Чтения или Записи). Данное ограничение введено для исключения возможности изменения конфигурации (и даже ее простого чтения) по разным каналам в одно и тоже время.

Для подключения к прибору необходимо указать:

Прибор: ЭНКМ-3,

Модель: ЭНКМ-3 (hw 5/6)

Протокол:

- USB (подключение по USB);
- МЭК-60870-5-101 (подключение по RS-485/232);
- МЭК-60870-5-104 (подключение по Ethernet).

Далее в зависимости от выбранного протокола указать параметры подключения и нажать кнопку «Идентифицировать». В статусной строке должны отобразиться полная модификация прибора, серийный номер, версия прошивки, версия платы.

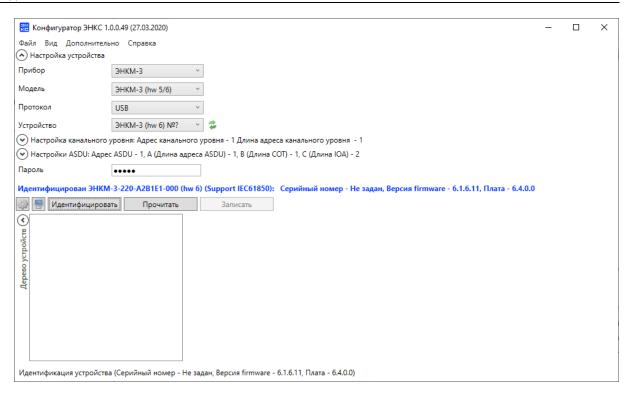


Рисунок 6.3. Чтение идентификационных данных с ЭНКМ-3

Для чтения конфигурации нажать кнопку «Прочитать».

Описание всех настроек см. в <u>руководстве пользователя</u> ПО «Конфигуратор ЭНКС» ЭНКС.403500.001 ПО.

6.3 Описание ПО «ES Find IP»

Утилита «ES Find IP» служит для обнаружения устройств, произведенных ООО «ИЦ «Энергосервис», находящихся в локальной сети.

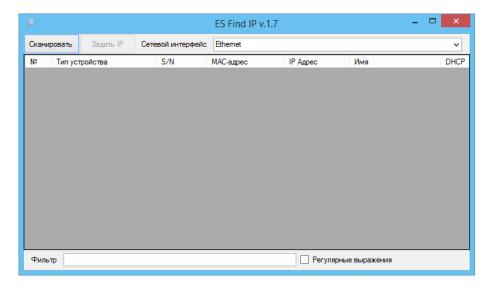


Рисунок 6.4. Окно программы «ES Find IP»

Для запуска необходимо запустить файл ESFindIP.exe. Далее необходимо нажать кнопку «Сканировать», после этого отобразятся все устройства, обнаруженные в локальной сети.

Чтобы изменить IP адрес прибора, необходимо нажать правой кнопкой на строке с прибором и в контекстном меню выбрать «Задать IP» (рис. 6.5).

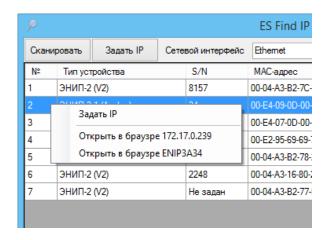


Рисунок 6.5. Окно программы «ES Find IP»

В поле «Фильтр» можно вводить критерий для поиска по любому из полей.

Внимание! В текущей версии ЭНКМ-3 не предполагается наличие web сервера, поэтому пункты меню «Открыть в браузере...» в ПО «ES Find IP»: следует игнорировать.

6.4 Сброс настроек к значениям по умолчанию

Чтобы сбросить настройки прибора на значения по умолчанию, необходимо воспользоваться ПК с установленной утилитой «EsBootloader». Подключите прибор к компьютеру через USB или RS-485/232, запустите ПО «EsBootloader», установите параметры подключения, выберите в меню «Инструменты» пункт «Сбросить конфигурацию», подтвердите сброс настроек и дождитесь в статусной строке сообщения о результатах операции.

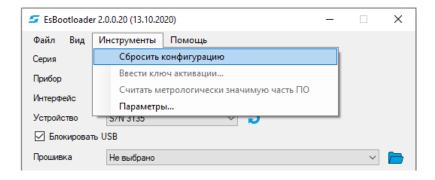


Рисунок 6.6. Сброс настроек устройства на значения по умолчанию в ПО «EsBootloader»

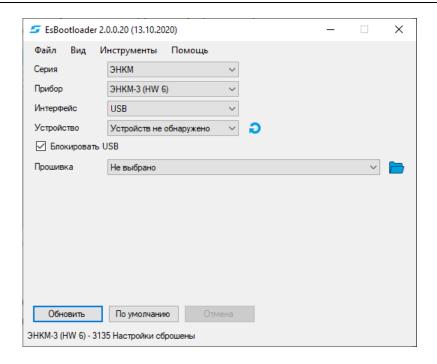


Рисунок 6.7. Сообщение об успешном сбросе настрое ЭНКМ-3 в статусной строке ПО «EsBootloader»

Настройки интерфейсов по умолчанию:

RS-232, RS-485 - 19200 бит/с, 8e1;

LAN: IP 192.168.0.10, DHCP client - выключен;

Логин: admin, пароль: admin

7 Техническое обслуживание

7.1 Общие указания

Эксплуатационный надзор за работой устройства должен производиться лицами, за которыми закреплено данное оборудование.

Устройства ЭНКМ-3 не должны вскрываться во время эксплуатации. Нарушение целостности гарантийной наклейки снимает с производителя гарантийные обязательства.

Все возникающие во время эксплуатации неисправности устраняет предприятие-изготовитель.

7.2 Меры безопасности

Работы по техническому обслуживанию должны выполняться квалифицированным персоналом.

Персонал, осуществляющий обслуживание устройств ЭНКМ-3, должен руководствоваться настоящим РЭ, а также ПОТ РМ-016-2001, РД153-34.0-03.150-00 «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок».

7.3 Порядок технического обслуживания

Микропроцессорные устройства, выпускаемые ООО «Инженерный центр «Энергосервис», не требуют в процессе эксплуатации при нормальных условиях дополнительного технического обслуживания. Однако, в соответствие с имеющимися регламентными документами, стандартами по эксплуатации устройств ССПИ, ТМ, АСДУ и др. возможны периодические и внеплановые осмотры, проверки оборудования.

7.3.1 Обновление прошивки

Большинство выпускаемых устройств имеет возможность обновления прошивки. Рекомендуется производить обновление при очередном плановом обслуживании.

Описание процесса обновления прошивки содержится в п. 6.1.

Рекомендуется подписаться на периодическую рассылку новостей на сайте www.enip2.ru, для оперативного информирования об обновлении прошивок, выпускаемых устройств.

7.3.2 Ремонт

Если устройство неисправно, или повреждено, необходимо:

- Демонтировать устройство;
- Составить акт неисправности, указав признаки неисправности прибора, контактные данные лица, диагностировавшего неисправность.
- Надежно упаковать устройство, чтобы исключить вероятность его повреждения при транспортировке.
- Отправить устройство вместе с актом неисправности и сопроводительным письмом, содержащим адрес и Ф.И.О. контактного лица для обратной отправки отремонтированных приборов.
- Установить прибор из ЗИП взамен неисправного, предварительно загрузив в него конфигурацию из архива.

Адрес и реквизиты для отправки можно уточнить у технической поддержки или в отделе продаж.

7.3.3 Осмотр оборудования

Рекомендован следующий порядок осмотра оборудования на месте эксплуатации:

- проверить работу имеющихся индикаторов;
- проверить состояние корпуса, убедиться в отсутствии механических повреждений;
- проверить состояние креплений и внешних цепей;

7.3.4 Профилактическое обслуживание

Перечень работ, которые могут быть включены, на усмотрение эксплуатирующей организации, в перечень плановых работ:

- Проверка наличия необходимого комплекта технической, программной и эксплуатационной документации.
- Проверка на актуальность версий технологического ПО, используемого для настройки и диагностики устройств.
- Копирование текущей конфигурации.
- Сравнение текущей конфигурации устройства с имеющейся в архиве.
- При необходимости обновление прошивок устройств с фиксированием номеров используемых версий прошивок.
- При необходимости тестирование резервных копий настроек на работоспособность.

- Плановая смена паролей для доступа к устройствам.
- Проверки правильности функционирования устройств:
 - правильность принимаемой и ретранслируемой информации;
- Заполнение документации по текущему обслуживанию.

7.4 Сервисный центр

Контактная информация сервисного центра ООО «Инженерный центр «Энергосервис»:

Адрес: 163046, г. Архангельск, ул. Котласская, д. 26

Телефон: (8182) 65-75-65

• E-mail: sales@ens.ru

• Режим работы: понедельник-пятница, 9:00-18:00

Сервисный центр выполняет работы по обслуживанию, ремонту и замене оборудования, изготавливаемого ООО «Инженерный центр «Энергосервис», а также осуществляет подготовку эксплуатационного и ремонтного персонала.

Сервисный центр выполняет следующие операции:

- Осуществляет послегарантийное обслуживание.
- Имеет в наличии согласованный с эксплуатирующей организацией аварийный резерв запчастей.
- Осуществляет оперативное прибытие специалистов сервисного центра на объекты, где возникают проблемы с установленным оборудованием, в течение 72 часов (время и место предварительно согласовывается с заявителем).
- Осуществляет поставку любых запасных частей, ремонт и/или замену любого блока оборудования в течение 20 лет с даты окончания гарантийного срока.
- Обеспечивает срок поставки запасных частей для оборудования с момента подписания договора на их покупку не более 6 месяцев.

8 Транспортировка и хранение

Условия транспортирования устройств должны соответствовать требованиям ГОСТ 26.205-88 и ГОСТ Р 52931-2008.

Транспортирование упакованных устройств допускается следующими видами транспорта: автомобильным, железнодорожным, авиационным - в отапливаемых герметизированных отсеках, речным и морским - в трюмах судов.

Способ размещения устройств в упаковке на транспортном средстве должно обеспечивать их устойчивое положение, исключать возможность ударов между собой, а также о стенки транспортных средств.

При погрузке и транспортировании должны строго выполняться требования манипуляционных знаков на таре.

При транспортировании в условиях отрицательных температур устройства перед расконсервацией должны быть выдержаны в течение не менее чем одних суток в нормальных условиях.

Устройство и его составные части в транспортной таре выдерживают температуру -50...+70°С при максимальной скорости изменения температуры 20°С/ч, воздействие относительной влажности (95+3) % при температуре плюс 35° С.

Транспортная тара и упаковка для устройств, отправляемой в районы Крайнего Севера и приравненные к ним местности в соответствии таблице 1 ГОСТ 15846.

Устройства должны храниться в упаковке, обеспечивающей консервацию в условиях хранения 1 по ГОСТ 15150-69.

В местах хранения устройств в окружающем воздухе должны отсутствовать кислотные, щелочные и другие агрессивные примеси, и токопроводящая пыль.

Составные части устройств в транспортной таре при хранении разрешается складировать не более, чем в два ряда.

9 Упаковка

УСД поставляются в индивидуальной и транспортной таре.

В упаковку укладывается 1 комплект УСД, указанный в разделе 4. Типовые размеры индивидуальной упаковки:

• 125x125x175 мм.

Количество УСД, укладываемых в транспортную тару, габаритные размеры, масса нетто и брутто – в зависимости от заказа. Типовая транспортная тара:

- гофрокороб размерами 375х350х250 мм, вмещающий 12 индивидуальных упаковок 125х125х175 мм;
- гофрокороб размерами 345x255x135 мм, вмещающий 4 индивидуальных упаковки 125x125x175 мм.

10 Гарантии изготовителя

Предприятие-изготовитель гарантирует соответствие изделия требованиям ТУ при соблюдении условий эксплуатации, хранения, транспортирования и монтажа. Гарантийный срок эксплуатации – 60 месяцев с даты поставки. Изготовитель обязуется в течение гарантийного срока безвозмездно производить ремонт изделия при соблюдении потребителем условий эксплуатации. Изготовитель не несет ответственности за повреждения изделия вследствие неправильного его хранения, транспортирования и эксплуатации, а также за несанкционированные изменения, внесенные потребителем в технические и программные средства изделия.

Приложение А. Формуляр соглашений о совместимости телемеханической системы на базе ЭНКМ-3 в соответствии с ГОСТ Р МЭК 60870-5-101-2006 / ГОСТ Р МЭК 60870-5-104-2004.

Настоящий формуляр представляет набор параметров и переменных, из которых может быть выбран поднабор для реализации конкретной системы телемеханики на базе устройства ЭНКМ-3 в соответствии с ГОСТ Р МЭК 60870-5-101-2006 (ГОСТ Р МЭК 60870-5-104-2004).

Для ряда параметров допускается только одно значение для каждой системы. Другие параметры, такие как набор данных и функций, используемых в направлении управления и контроля, позволяют определить набор или поднаборы, подходящие для использования на данном объекте. На стадии наладки обмена телемеханической информацией необходимо, чтобы выбранные параметры были согласованы между ЭНКМ-3 и оборудованием других производителей.

Принятые обозначения:

	- Функция	или ASDU	не использ	verca
_	THE WILLIAM	טטכה וזוווו		VC ГСЛ.

R - Функция или ASDU используется в только в обратном направлении.

■ - Функция или ASDU используется в обоих направлениях.

Возможный выбор (пустой, X, R или B) определяется для каждого пункта или параметра. Черный прямоугольник указывает на то, что опция не может быть выбрана в настоящем стандарте.

1. Система или устройство

(Параметр, характерный для системы; указывает на определение системы или устройства, маркируя один из нижеследующих прямоугольников знаком «Х»)

ГОСТ Р МЭК 60870-5-101-2006	ГОСТ Р МЭК 60870-5-104-2004	
□ Определение системы.	□ Определение системы.	
🗵 Определение контролирующей	П Определение контролирующей	
станции (Ведущий-Master).	станции (Ведущий-Master).	
🗵 Определение контролируемой	П Определение контролируемой	
станции (Ведомый-Slave).	станции (Ведомый-Slave).	

2. Конфигурация сети

ГОСТ Р МЭК 60870-5-101-2006				
X	Точка-точка	\times	Магистральная	
X	Радиальная точка-точка	X	Многоточечная	
радиальная				

ГОСТ Р МЭК 60870-5-104-2004				
	Точка-точка		Магистральная	
	Радиальная точка-точка		Многоточечная	
радиальная				

3. Физический уровень

(Параметр, характерный для сети; все используемые интерфейсы и скорости передачи данных маркируются знаком «Х»)

Скорости передачи (направление управления)

ГОСТ Р МЭК 60870-5-101-2006					
Несимметричные		Неси	Несимметричные цепи обмена		етричные цепи обмена
цепи обмена		V.24/	V.24/V.28, рекомендуемые при		X.27
V.24/V.28		скор	скорости более1200 бит/с		
стандартные					
	100бит/с	X	2400бит/с		2400бит/с
	200бит/с	X	4800бит/с		4800бит/с
	300бит/с	\boxtimes	9600бит/с		9600бит/с
	600бит/с	X	19200бит/с		19200бит/с
	1200бит/с	X	38400 бит/с		38400бит/с
		X	57600 бит/с		56000бит/с
		X	115200 бит/с		64000бит/с

ГОСТ Р МЭК 60870-5-104-2004				
Несимметричные	Несимметричные	Симметричные цепи обмена Х.24/Х.27		
цепи обмена	цепи обмена			
V.24/V.28	V.24/V.28,			
стандартные	рекомендуемые при			
	скорости более1200			
	бит/с			
■ —100бит/с	■ —2400бит/с	■ 2400бит/с ■ 38400бит/с		
■ 200бит/с	■ ——4800бит/с	■ 4800бит/с ■ 56000бит/с		
■ <u>300бит/с</u>	■ 9600бит/с	■ 9600бит/с ■ 64000бит/с		
= 600бит/с		■ 9200бит/с		
■ ——1200бит/с				

Скорости передачи (направление контроля)

ГОСТ Р МЭК 60870-5-101-2006			
Несимметричные	Несимметричные цепи обмена	Симметричные цепи обмена	
цепи обмена	V.24/V.28, рекомендуемые при	X.24/X.27	
	скорости более1200 бит/с		

V.24/V.28				
станд	цартные			
	100бит/с	X	2400бит/с	2400бит/с
	200бит/с	X	4800бит/с	4800бит/с
	300бит/с	X	9600бит/с	9600бит/с
	600бит/с	X	19200бит/с	19200бит/с
	1200бит/с	X	38400 бит/с	38400бит/с
		X	57600 бит/с	56000бит/с
		X	115200 бит/с	64000бит/с

ГОСТ Р МЭК 60870-5-104-2004				
Несимметричные	Несимметричные	Симметричные цепи обмена Х.24/Х.27		
цепи обмена	цепи обмена			
V.24/V.28	V.24/V.28,			
стандартные	рекомендуемые при			
	скорости более1200			
	бит/с			
■ 100бит/с	■ 2400бит/с	■ 2400бит/с ■ 38400бит/с		
■ 200бит/с	■ ——4800бит/с	■ 4800бит/с ■ 56000бит/с		
■ <u>300бит/с</u>	■ 9600бит/с	■ 9600бит/с ■ 64000бит/с		
■ 600бит/с		■ — 19200бит/с		
■ ——1200бит/с				

Параметры соединения (при использовании асинхронных каналов связи)

ГОСТ	ГОСТ Р МЭК 60870-5-101-2006		
8	– Количество бит данных (5,6,7,8)		
1	– Количество стоп-битов (1, 2)		
	– Четность отсутствует (None)		
X	– Контроль по четности (Even)		
	– Контроль по нечетности (Odd)		

ГОСТ Р МЭК 60870-5-104-2004
– Количество бит данных (5,6,7,8)
— Количество стоп-битов (1, 2)
□ - Четность отсутствует (None)
□ – Контроль по четности (Even)
— – Контроль по нечетности (Odd)

4. Канальный уровень

(Параметр, характерный для сети; все используемые опции маркируются знаком X.) Указывают максимальную длину кадра. Если применяется нестандартное назначение для сообщений класса 2 при небалансной передаче, то указывают Туре ID (или

Идентификаторы типа) и СОТ (Причины передачи) всех сообщений, приписанных классу 2.

ГОСТ Р МЭК 60870-5-101-2006

В настоящем стандарте используются только формат кадра FT 1.2, управляющий символ 1 и фиксированный интервал времени ожидания.

Передача по каналу	Адресное поле канального уровня
□ Балансная передача	
🗵 Небалансная передача	🛘 Отсутствует (только при балансной
Длина кадра	передаче)
255 Максимальная длина L (число байтов)	🗵 Один байт
(в направлении управления)	🗖 Два байта
255 Максимальная длина L (число байтов)	Структурированное
(в направлении контроля)	🗵 Неструктурированное
5 повторений — Либо время, в течение которого разрешаются повторения (Trp), либо, число повторений	1–254 Диапазон значений канального адреса
передачи:	2 (низкий приоритет) с указанием причин бщениям класса 2 используется следующим
ИДЕНТИФИКАТОР типа	Причина передачи
🗵 Специальное назначение ASD	U к сообщениям класса 2 используется
следующим образом	
ИДЕНТИФИКАТОР типа	Причина передачи

Примечание: При ответе на опрос данных класса 2 контролируемая станция может посылать в ответ данные класса 1, если нет доступных данных класса 2.

ГОСТ Р МЭК 60870-5-104-2004

В настоящем стандарте используются только формат кадра FT 1.2, управляющий символ 1 и фиксированный интервал времени ожидания.

Передача по каналу	Адресное поле канального уровня	
■ Балансная передача	■ Отсутствует (только при балансной	
■ Небалансная передача	передаче)	
_	■ Один байт	
Длина кадра	■ Два байта	
■ Максимальная длина L (число байтов)	■ Структурированное	
	■ Неструктурированное	

При использовании небалансного канального уровня следующие типы ASDU возвращаются при сообщениях класса 2 (низкий приоритет) с указанием причин передачи:

■ Стандартное назначение ASDU к сообщениям класса 2 используется следующим образом

ИДЕНТИФИКАТОР типа	Причина передачи

■ Специальное назначение ASDU к сообщениям класса 2 используется следующим образом

ИДЕНТИФИКАТОР типа	Причина передачи

5. Прикладной уровень

Режим передачи прикладных данных

В настоящем стандарте используется только режим 1 (первым передается младший байт), как определено в 4.10 ГОСТ Р МЭК 870-5-4.

Общий адрес ASDU

(Параметр, характерный для системы; все используемые варианты маркируются знаком X).

ГОСТ Р МЭК 60870-5-101-2006	ГОСТ Р МЭК 60870-5-104-2004	
⊠ Один байт⊠ Два байта	■ Один байт ■ Два байта	

Адрес объекта информации

(Параметр, характерный для системы; все используемые варианты маркируются знаком X).

ГОСТ	Р МЭК 60870-5-101-2006		
	Один байт	X	Структурированный
X	Два байта	X	Неструктурированный
X	Три байта		

ГОСТ Р МЭК 60870-5-104-2004		
■ Один байт		Структурированный
■ Два байта	В	Неструктурированный
🗵 Три байта		

Причина передачи

(Параметр, характерный для системы; все используемые варианты маркируются знаком X).

ГОСТ Р МЭК 60870-5-101-2006		
🗵 Один байт	X	Два байта (с адресом источника)

ГОСТ Р МЭК 60870-5-104-2004		
■ Один байт	X	Два байта (с адресом источника)

Если адрес источника не используется, то он устанавливается в 0.

ГОСТ Р МЭК 60870-5-104-2004
Длина APDU
(Параметр, характерный для системы, устанавливающий максимальную длину APDU в
системе).
Максимальная длина APDU равна 253 (по умолчанию). Максимальная длина может быть
уменьшена для системы.
Максимальная длина APDU для систем.

Выбор стандартных ASDU

Информация о процессе в направлении контроля

Назначение идентификатора типа и причины передачи

(Параметр, характерный для станции).

ГОСТ Р МЭК 60870-5-104-2004

иленти	1ФИКАТОР	Пр	ичиі	на пе	еред	цачи											
ТИПА	ΙΦΛΙΚΑΤΟΡ	1	2	3	4	5	6	7	8	9	10	11	12	13	20-	37-	44-
	T				•	_	_	-	_	·					36	41	47
<1>	M_SP_NA_1		Х												Х		
<2>	M_SP_TA_1												1				
<3>	M_DP_NA_1		Х	Χ											Χ		
<4>	M_DP_TA_1																
<5>	M_ST_NA_1		Х	Χ											Χ		
<6>	M_ST_TA_1																
<7>	M_BO_NA_1		Χ	Χ											Χ		
<8>	M_BO_TA_1																
<9>	M_ME_NA_1	Х	Χ	Х											Χ		
<10>	M ME TA 1																
<11>	M_ME_NB_1	Χ	Χ	Χ											Х		
<12>	M ME TB 1																
<13>	M_ME_NC_1	Χ	Χ	Χ											Х		
<14>	M ME TC 1																
<15>	M IT NA 1			Χ												Х	
<16>	M IT TA 1			^												^	
<17>	M_EP_TA_1																
<18>	M_EP_TA_1 M_EP_TB_1																
<19>																	
	M_EP_TC_1																
<20>	M_PS_NA_1																
<21>	M_ME_ND_1			.,													
<30>	M_SP_TB_1			Х													
<31>	M_DP_TB_1			Х													
<32>	M_ST_TB_1			Х													
<33>	M_BO_TB_1			Х													
<34>	M_ME_TD_1			Х													
<35>	M_ME_TE_1			Χ													
<36>	M_ME_TF_1			Χ													
<37>	M_IT_TB_1			Х													
<38>	M_EP_TD_1																
<39>	M_IT_TB_1																
<40>	M EP TD 1																
<45>	C SC NA 1						R	R	R	R	R						R
<46>	C DC NA 1						R	R	R	R	R						R
<47>	C RC NA 1																
<48>	C SE NA 1																
<49>	C SE NB 1																
<50>	C_SE_NC_1																
<51>	C_BO_NA_1																
<70>	M_EI_NA_1																
<100>	C_IC_NA_1						R	R	R	R	R						
									Κ	К							
<101>	C_CI_NA_1					0	R	R			R						
<102>	C_RD_NA_1					R	_	<u></u>									R
<103>	C_CS_NA_1						R	R									R
<104>	C_TS_NA_1																
<105>	C_RP_NA_1																
<106>	C_CD_NA_1																
<110>	P_ME_NA_1																
<111>	P_ME_NB_1																
<112>	P_ME_NC_1			L													

<113>	P_AC_NA_1								
<120>	F_FR_NA_1								
<121>	F_SR_NA_1								
<122>	F_SC_NA_1								
<123>	F_LS_NA_1								
<124>	F_AF_NA_1								
<124> <125>	F_CG_NA_1								
<126>	F_DR_TA_1								

Обозначения:

Серые прямоугольники: опция не требуется.

Черный прямоугольник: опция, не разрешенная в настоящем стандарте.

Пустой прямоугольник: функция или ASDU не используется.

Маркировка Идентификатора типа/Причины передачи:

Х - используется только в стандартном направлении;

R - используется только в обратном направлении;

В - используется в обоих направлениях.

ГОСТ Р	МЭК 60870-5-10	01-2	2006	ı													
иленті	ИФИКАТОР	Пр	ичи	на п	epe	цачи											
ТИПА	ЛФИКАТОР	1	2	3	4	5	6	7	8	9	10	11	12	13	20- 36	37- 41	44- 47
<1>	M_SP_NA_1		Χ			Χ						Χ	Х		Χ		
<2>	M_SP_TA_1																
<3>	M_DP_NA_1		Χ	Χ		Χ						Χ	Χ		Χ		
<4>	M_DP_TA_1																
<5>	M_ST_NA_1		Χ	Χ		Χ						Χ	Χ		Χ		
<6>	M_ST_TA_1																
<7>	M_BO_NA_1		Χ	Χ											Χ		
<8>	M_BO_TA_1																
<9>	M_ME_NA_1	Χ	Χ	Χ		Χ									Χ		
<10>	M_ME_TA_1																
<11>	M_ME_NB_1	Χ	Χ	Χ		Χ									Χ		
<12>	M_ME_TB_1																
<13>	M_ME_NC_1	Χ	Χ	Χ		Χ									Χ		
<14>	M_ME_TC_1																
<15>	M_IT_NA_1			Χ												Χ	
<16>	M_IT_TA_1																
<17>	M_EP_TA_1																
<18>	M_EP_TB_1																
<19>	M_EP_TC_1																
<20>	M_PS_NA_1																
<21>	M_ME_ND_1																
<30>	M_SP_TB_1			Χ		Χ						Χ	Χ				
<31>	M_DP_TB_1			Χ		Χ						Χ	Χ				

_	T													
<32>	M_ST_TB_1		Χ	Χ						Χ	Χ			
<33>	M_BO_TB_1		Χ	Χ										
<34>	M_ME_TD_1		Χ	Χ										
<35>	M_ME_TE_1		Χ	Χ										
<36>	M_ME_TF_1		Χ	Χ										
<37>	M_IT_TB_1		Χ										Χ	
<38>	M_EP_TD_1													
<39>	M_IT_TB_1													
<40>	M_EP_TD_1													
<45>	C_SC_NA_1				R	R	R	R	R					R
<46>	C_DC_NA_1				R	R	R	R	R					R
<47>	C_RC_NA_1													
<48>	C_SE_NA_1													
<49>	C_SE_NB_1													
<50>	C_SE_NC_1													
<51>	C_BO_NA_1													
<70>	M_EI_NA_1													
<100>	C_IC_NA_1				R	R	R	R	R					
<101>	C_CI_NA_1				R	R			R					
<102>	C_RD_NA_1			R										R
<103>	C_CS_NA_1				R	R								R
<104>	C_TS_NA_1													
<105>	C_RP_NA_1													
<106>	C_CD_NA_1													
<110>	P_ME_NA_1													
<111>	P_ME_NB_1													
<112>	P_ME_NC_1													
<113>	P_AC_NA_1													
<120>	F_FR_NA_1													
<121>	F_SR_NA_1													
<122>	F_SC_NA_1													
<123>	F_LS_NA_1													
<124>	F_AF_NA_1													
<125>	F_CG_NA_1													
<126>	F_DR_TA_1													

6. Основные прикладные функции

Инициализация станции
□ Удаленная инициализация
Циклическая передача данных
🗵 Циклическая передача данных
Процедура чтения
□ Процедура чтения

Спорадическая передача

⊠ Спорадическая передача

Дублированная передача объектов информации при спорадической причине передачи

(Параметр, характерный для станции; каждый тип информации маркируется знаком X, если оба типа – Туре ID без метки времени и соответствующий Туре ID с меткой времени - выдаются в ответ на одиночное спорадическое изменение в

контролируемом о	бъекте).			
объекта информац объектов информ	ификаторы типов, в ии, могут передават мации, для кото оектной документац	ься последовател рых возможна		ьные адреса
□ Одноэлементная	я информация M_SP_	NA_1, M_SP_TA_1,	M_SP_TB_1,	
M_PS_NA_1				
□ Двухэлементная	информация M_DP_	NA_1, M_DP TA 1,	M_DP_TB_1	
□ Информация о г	положении отпаек М	_ST_NA_1, M_ST_T	A_1, M_ST_TB_1	
□ Строка из 32 (конкретного проек	бит M_BO_NA_1, M __ та, см. 7.2.1.1)	BO_TA_1,M_BO_	ТВ_1 (если опре	делено для
□ Измеряемое зн M_ME_TD_1	ачение, нормализов	занное M_ME_NA _.	_1, M_ME_TA_1, I	M_ME_ND_1
□ Измеряемое зна	чение, масштабиров	занное M_ME_NB_	1, M_ME_TB_1, M_	ME_TE_1
□ Измеряемое зн М_МЕ_TC_1, М_МЕ_	ачение, короткий _TF_1	формат с плава	ющей запятой	M_ME_NC_1
Опрос станции				
🗵 – Общий				
🗆 – Группа 1	🗆 – Группа 7	🗆 – Группа 13		
🗆 – Группа 2	🗆 – Группа 8	🗆 – Группа 14		
— Г 7	·	- - 4-		

🗵 – Общий		
🗆 – Группа 1	🗆 – Группа 7	🗆 – Группа 13
🗆 – Группа 2	🗆 – Группа 8	🗆 – Группа 14
🗆 – Группа 3	🗆 – Группа 9	🗆 – Группа 15
🗆 – Группа 4	🗆 – Группа 10	□ – Группа 16

ЭНКМ-3. Руководство по эксплуатации.	. ЭНКМ.403570.004 РЭ ред.	09.202

□ Фиксация счетчика без сброса

□ Фиксация счетчика со сбросом

сообщаются спорадически

□ Считывание счетчика

□ Сброс счетчика
R – Синхронизация времени
□ Запрос счетчиков группы 1
□ Запрос счетчиков группы 2
□ Запрос счетчиков группы 3
□ Запрос счетчиков группы 4
Загрузка параметра
□ Пороговое значение величины
□ Коэффициент сглаживания
□ Нижний предел для передачи значений измеряемой величины
□ Верхний предел для передачи значений измеряемой величины
Активация параметра
Активация параметра □ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов
☐ Активация/деактивация постоянной циклической или периодической передачи
□ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов
 □ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов Процедура тестирования
□ Активация/деактивация постоянной циклической или периодической передачи адресованных объектовПроцедура тестирования□ Процедура тестирования
 □ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов Процедура тестирования □ Процедура тестирования Пересылка файлов
 □ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов Процедура тестирования □ Процедура тестирования Пересылка файлов Пересылка файлов в направлении контроля
□ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов Процедура тестирования Процедура тестирования Пересылка файлов Пересылка файлов в направлении контроля □ Прозрачный файл
 □ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов Процедура тестирования □ Процедура тестирования Пересылка файлов □ Пересылка файлов в направлении контроля □ Прозрачный файл □ Передача данных о повреждениях от аппаратуры защиты

Пересылка файлов в направлении управления

ПΠ	ทกร	рачны	й	фа	йп
	PUS	pannoi	VI.	Ψα	<i>V</i> <i>J</i>

Фоновое сканирование

Фоновое сканирование

Фоновое сканирование - приоритет передачи самый низкий.

Типы срабатывания фонового сканирования:

- адаптивное –любое изменение параметра влечет его передачу с признаком «фоновое сканирование»
- при изменении актуальности изменение бита IV NT (если они включены в настройках) у параметра влечет его передачу с признаком «фоновое сканирование».

Получение задержки передачи

ГОСТ Р МЭК 60870-5-101-2006	ГОСТ Р МЭК 60870-5-104-2004	
Получение задержки	■ Получение задержки	
передачи	передачи	

Далее только для ГОСТ Р МЭК 60870-5-104-2004:

Определение таймаутов

Параметр	Значение по	Примечания	Выбранное
Параметр	умолчанию	примечания	значение
t_0	30 c	Таймаут при установлении соединения	
t_1	15 с	Таймаут при посылке или тестировании APDU	15
t_2	10 с	Таймаут для подтверждения в случае отсутствия сообщения с данными t2 <t1< td=""><td>10</td></t1<>	10
t ₃	20 c	Таймаут для посылки блоков тестирования в случае долгого простоя	20

Максимальный диапазон значений для всех таймаутов равен: от 1 до 255 секунд с точностью 1 с.

Максимальное число k неподтвержденных APDU формата I и последних подтверждающих APDU (w):

Параметр Значение по		Примечания
Параметр	умолчанию	
K	Ι1 / ΔΡΙΝΙ	Максимальная разность переменной состояния передачи и номера последнего подтвержденного APDU
W	8 APDU	Последнее подтверждение после приема w APDU формата I

Параметры K и W не подлежат изменению.

Номер порта

Параметр	Значение	Примечания
Номер порта	2404	Настраиваемый

Приложение Б. Протокол Modbus

Общие сведения

В настоящем приложении описана реализация протокола Modbus (Modbus — это торговая марка, принадлежащая компании Schneider Electric), используемого для обмена данными между ЭНКМ-3 и опрашиваемыми устройствами.

Для непосредственного знакомства с основами протокола Modbus необходимо скачать руководство «Modicon Modbus Protocol Reference Guide» с сайта www.modbus.org.

Modbus RTU

При использовании RTU-режима каждый байт сообщения содержит два 4-х битных шестнадцатеричных числа. Каждое сообщение передается непрерывным потоком.

Формат каждого байта в RTU-режиме:

- Система кодировки: 8-ми битная двоичная, шестнадцатеричная 0 9, А F
- Две шестнадцатеричные цифры содержатся в каждом 8-ми битном байте сообщения.

Назначение бит:

- 1 стартовый бит
- 8 бит данных, младшим значащим разрядом вперед
- 1 бит паритета; нет бита паритета
- 1 стоповый бит, если есть паритет; 2 стоповых бита, если нет паритета
- Контрольная сумма: Cyclical Redundancy Check (CRC)

Содержание сообщения

Сообщение начинается с интервала тишины равного времени передачи 3,5 символов при данной скорости передачи в сети. Первым полем передается адрес устройства.

Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3,5 символов. Новое сообщение должно начинаться не раньше этого интервала.

Таким образом, если новое сообщение начнется раньше интервала длительностью 3,5 символа, принимающее устройство воспримет его как продолжение предыдущего

сообщения. В этом случае устанавливается ошибка, так как будет несовпадение контрольных сумм.

Старт	Адрес	Функция	Данные	CRC	Конец
T1-T2-T3-T4	8 бит	8 бит	N x 8 бит	16 бит	T1-T2-T3-T4

Поддерживаемые команды

h01 read coil;

h02 read input status;

h03 read holding registers;

h04 read input registers;

h05 write single coil;

h06 write single holding register.

Структура Modbus-запроса:

Для функций read

Адрес	Команда	Стартовый адрес	Число параметров	Контрольная сумма
1 байт	1 байт	2 байта	2 байта	2 байта

Для функции write

Адрес	Команда	Адрес параметра	Статус параметра	Контрольная сумма
1 байт	1 байт	2 байта	2 байта	2 байта

Адрес – slave адрес опрашиваемого устройства; задаётся заводом-изготовителем или при настройке устройства, принимает значения от 1 до 254.

Команда – одна из поддерживаемых ЭНКМ-3 команд;

Стартовый адрес (адрес параметра) – адрес параметра устройства, принимает значение от 0 до 65535 (hFFFF). При настройке ЭНКМ-3 адрес параметра всегда задается в десятичном формате. Адресация параметров в документации устройств может быть задана несколькими способами, пример некоторых принятых адресов см. ниже:

Адрес параметра в описании устройства	Преобразование	Адрес, задаваемый в ЭНКМ-3
15 (десятичное число)	-	15
0x02 (1-байтный hex)	h02 = 2	2

011В (2-байтный hex)	h011B = 283	283
416396 (логический адрес)	Отбрасываем первую цифру, из	16395
	оставшегося числа вычитаем 1	

Число параметров – количество запрашиваемых параметров; например, при запросе трех параметров со стартовым адресом 02, ответом будут служить значения, хранящихся в адресах 02, 03, 04.

Статус параметра – используется при отправке команд телеуправления, принимает значения hFF00 (включить) или h0000 (выключить);

Контрольная сумма – стандартная для протокола контрольная сумма (CRC).

Приложение В. Протокол SNMP

В рамках протокола SNMP v1 ЭНКМ-3 поддерживает передачу следующей базы управляющей информации или Management Information Base (MIB) (файл *.mib для ЭНКМ-3 доступен по <u>ссылке</u>):

MIB-объект	Описание	Значение
SysDescr.0	Наименование устройства	Intelligent electronic device ENCM-5
SysUpTime.0	Время работы	XX hours, XX minutes, XX.XX seconds
SysContact.0	Контактная информация	www.enip2.ru, ed@ens.ru, +7 (818-2) 64-60-00
SysName.0	Модификация устройства, серийный номер, версия встроенного ПО	ENCM-5, s/n, f/w
IfNumber.0	Количество интерфейсов	10
IfTable.0: IfIndex.X ifDescr.X ifInOctets.X ifOutOctets.X	Таблица статистики интерфейсов: Номер интерфейса Описание Принято байт Отправлено байт	
diagSerialNumers.0	Серийный номер	s/n
diagFirmware.0	Версия встроенного ПО	f/w
diagGPSsynh.0	Состояние связи со спутниками ГНСС	
diagChanneNumber.0	Количество каналов	16
diagChannelTable.0:	Таблица диагностики каналов:	
diagChannelIndex.X	Индекс канала	
diagChannelString.X	Описание	
diagChannelInOctets.X	Принято байт	
diagChannelOutOctets.X	Отправлено байт	
diagChannelLocalIP.X	IP-адрес	
diagChannelLocalPort.X	ТСР-порт	
diagChannelRemotelP.X	IP-адрес клиента	
diagChannelRemotePort.X diagChannelState.X	ТСР-порт клиента	
diagSynh103.0	Состояние канала Время последней синхронизации	
diagsylli103.0	по протоколам МЭК-101/104	
diagNTPsynh.0	Время последней синхронизации	
numAllTC.0	по SNTP Общее количество TC	
tcTable.0:	Таблица ТС УСД	
tcIndex.X	Индекс ТС	
tcAdrRTU1.X	Адрес RTU	
tcParameter.X	Состояние ТС	
numAllTCopr.0	Общее количество ТС опроса	
tcOprTable.0:	Таблица ТС опроса УСД	
tcOprIndex.X	Индекс ТС опроса	
tcOprAdrRTU1.X	Адрес RTU	
tcOprParameter.X	Состояние ТС опроса	
tcOprTime.X	Время последнего изменения	
tiTable.0:	Таблица ТИ УСД	
tilndex.X	Индекс ТИ	

tiAdrRTU1.X	Адрес RTU
tiParameterX	Значение ТИ
tiTime.X	Время последнего изменения
modemState.0	Состояние GPRS соединения
myGPRS-IP.0	IP-адрес сим-карты

Приложение Г. Протокол МЭК 61850

Внимание! Наличие поддержки протокола определяется при заказе прибора (доп. опция ES61850.encm3). В дальнейшем можно приобрести активацию и активировать поддержку протокола на месте.

Таблица Д.1.1 - Основные положения о соответствии

иолици д.т.т	основные положении о соответствии	Client/ subscriber	Server/ publisher	Value/ comments		
Client-server	Client-server roles					
B11	Server side (of TWO-PARTY APPLICATION-ASSOCIATION)		•			
B12	Client side of (TWO-PARTY APPLICATION-ASSOCIATION)	•				
SCSMs suppo	orted					
B21	SCSM: IEC 61850-8-1 used	•	•			
B22	SCSM: IEC 61850-9-1 used					
B23	SCSM: IEC 61850-9-2 used					
B24	SCSM: other					
Generic subs	tation event model (GSE)					
B31	Publisher side		•			
B32	Subscriber side	•				
Transmission of sampled value model (SVC)						
B41	Publisher side					
B42	Subscriber side					

• - поддерживаемые сервисы

Таблица Д.1.2 – Положения о соответствии ACSI моделей

положения о соответствии жезт моделей			
	Client/	Server/	Value/
	subscriber	publisher	comments
(B11) supported			
Logical device		•	
Logical node		•	
Data		•	
Data set		•	
Substitution			
Setting group control			
Reporting			
Buffered report control			
sequence-number			
report-time-stamp			
reason-for-inclusion			
data-set-name			
data-reference			
	Logical device Logical node Data Data set Substitution Setting group control Reporting Buffered report control sequence-number report-time-stamp reason-for-inclusion data-set-name	(B11) supported Logical device Logical node Data Data set Substitution Setting group control Reporting Buffered report control sequence-number report-time-stamp reason-for-inclusion data-set-name	Subscriber Publisher

		Client/	Server/	Value/
		subscriber	publisher	comments
M7-6	buffer-overflow			
M7-7	entryID			
	conf_revision			
M7-8	BufTm			
M7-9	IntgPd			
M7-10	GI			
M8	Unbuffered report control		•	
M8-1	sequence-number		•	
M8-2	report-time-stamp		•	
M8-3	reason-for-inclusion		•	
M8-4	data-set-name		•	
M8-5	data-reference		•	
	conf_revision		•	
M8-6	BufTm		•	BufTm = 0
M8-7	IntgPd		•	
M8-8	GI		•	
	Logging			
M9	Log control			
M9-1	IntgPd			
M10	Log			
M11	Control			
If GSE (B31/l	B32) is supported			
	GOOSE			
M12-1	entryID			
M12-2	DataRefInc			
M13	GSSE			
If SVC (B41/	B42) is supported			
M14	Multicast SVC			
M15	Unicast SVC			
M16	Time			
M17	File Transfer			

• – поддерживаемые сервисы

Таблица Д.1.3 – Положения о соответствии ACSI сервисов

Services		AA: TP/MC	Client/ subscriber	Server/ publisher	Comments	
Server (Clause 6)						
S1	Server Directory	TP		•		

Application association (Clause 7)					
S2	Associate		•	•	
S3	Abort			•	
S4	Release			•	

Services		AA: TP/MC	Client/ subscriber	Server/ publisher	Comments
Lonical d	evice (Clause 8)				
S5	LogicalDeviceDirectory	TP		•	
33	LogicalDeviceDirectory				
Logical n	ode (Clause 9)				
S6	LogicalNodeDirectory	TP		•	
S7	GetAllDataValues	TP		•	
Data (Cla			1	1	I
S8	GetDataValues	TP		•	
S9	SetDataValues	TP	•	•	
S10	GetDataDirectory	TP		•	
S11	GetDataDefinition	TP		•	
Data set	(Clause 11)				
S12	GetDataSetValues	TP		•	
S13	SetDataSetValues	TP		•	
S14	CreateDataSet	TP		•	
S15	DeleteDataSet	TP		•	
S16	GetDataSetDirectory	TP		•	
	,	I			
Substitut	ion (Clause 12)				
S17	SetDataValues	TP			
	roup control (Clause 13)		1		ı
S18	SelectActiveSG	TP			
S19	SelectEditSG	TP			
S20	SetSGValues	TP			
S21	ConfirmEditSGValues	TP			
S22	GetSGValues	TP			
S23	GetSGCBValues	TP			
Reporting	g (Clause 14)				
	report control block (BRCB)				
S24	Report	TP			
S24-1	data-change (dchg)				
S24-2	qchg-change (qchg)				
S24-3	data-update (dupd)				
S25	GetBRCBValues	TP			
S26	SetBRCBValues	TP			
Unbuffere	ed report control block (URCB)				
S27	Report	TP	•	•	
S27-1	data-change (dchg)			•	
S27-2	qchg-change (qchg)			•	
S27-3	data-update (dupd)				

Services		AA: TP/MC	Client/ subscriber	Server/ publisher	Comments
S28	GetURCBValues	TP		•	
S29	SetURCBValues	TP		•	

Logging (Clause 14)					
Log control	Log control block				
S30	GetLCBValues	TP			
S31	SetLCBValues	TP			
Log					
S32	QueryLogByTime	TP			
S33	QueryLogAfter	TP			
S34	GetLogStatusValues	TP			

Generic substation event model (GSE) (14.3.5.3.4)					
GOOSE-CONTROL-BLOCK					
S35	SendGOOSEMessage	MC		•	
S36	GetGoReference	TP			
S37	GetGOOSEElementNumber	TP			
S38	GetGoCBValues	TP		•	
S39	SetGoCBValues	TP		•	
GSSE-CONTR	ROL-BLOCK				
S40	SendGSSEMessage	MC			
S41	GetGsReference	TP			
S42	GetGSSEElementNumber	TP			
S43	GetGsCBValues	TP			
S44	SetGsCBValues	TP			

Transmission of sampled value model (SVC) (Clause 16)					
Multicast SVC					
S45	SendMSVMessage	MC			
S46	GetMSVCBValues	TP			
S47	SetMSVCBValues	TP			
Unicast SVC					
S48	SendUSVMessage	TP			
S49	GetUSVCBValues	TP			
S50	SetUSVCBValues	TP			

Control (17.5.1)					
S51	Select	TP			
S52	SelectWithValue	TP	•	•	
S53	Cancel	TP		•	
S54	Operate	TP	•	•	
S55	CommandTermination	TP		•	
S56	TimeActivated-Operate	TP			

Services		AA: TP/MC	Client/ subscriber	Server/ publisher	Comments		
File transfer (Clause 20)							
S57	GetFile	TP					
S58	SetFile	TP					
S59	DeleteFile	TP					
S60	GetFileAttributeValues	TP					

Time (Clause 18)							
T1	Time resolution of internal clock	TP		1 ms			
T2	Time accuracy of internal clock	TP		1 ms			
T3	Supported TimeStamp resolution	TP		1 ms			

• – поддерживаемые сервисы